

» User Guide «

CP6003-SA/RA/RC IPMI Firmware

Doc. ID: 1045-5656, Rev. 2.0 January 12, 2012

Revision History

P	Publication Title: CP6003-SA/RA/RC IPMI Firmware User Guide		9	
Doc. ID:		1045-5656		
Rev.		Brief Description of Changes	Date of Issue	
1.0	Initial issue		11-Aug-2011	
2.0	Added descript	tion for the CP6003-RA/RC	12-Jan-2012	

Imprint

Kontron Modular Computers GmbH may be contacted via the following:

MAILING ADDRESS

TELEPHONE AND E-MAIL

Kontron Modular Computers GmbH

+49 (0) 800-SALESKONTRON

Sudetenstraße 7

sales@kontron.com

D - 87600 Kaufbeuren Germany

For further information about other Kontron products, please visit our Internet website: www.kontron.com.

Disclaimer

Copyright © 2012 Kontron AG. All rights reserved. All data is for information purposes only and not guaranteed for legal purposes. Information has been carefully checked and is believed to be accurate; however, no responsibility is assumed for inaccuracies. Kontron and the Kontron logo and all other trademarks or registered trademarks are the property of their respective owners and are recognized. Specifications are subject to change without notice.

Page 2 ID 1045-5656, Rev. 2.0

Table of Contents

	on History	
	t	
	imer	
	of Contents	
LIST OF	Tables	
1. li	ntroduction	9
1.1	Terminology and Acronym Definitions	9
	Related Publications	
1.3	IPMI Overview	11
2. II	PMI Setup	12
	IPMI in a CompactPCI Chassis	
	IPMI Setup for the CP6003-SA/RA/RC	
	IPMI Setup for the Rack	
3. II	PMI Controller Hardware	13
4. II	PMI Firmware	14
4.1	Key Features	14
<i>5.</i> S	Supported IPMI and ATCA Commands	15
5.1	Standard IPMI Commands	15
5.2	AdvancedTCA and AMC Commands	20
6. C	DEM Commands and Command Extensions	21
6.1	Get Device ID Command with OEM Extensions	21
6.2	Set Firmware Parameters	22
6.3	Set Control State (SPI Boot Flash, Boot Order)	

6.4	Get Control State (SPI Boot Flash, Boot Order)	24
7. 5	Sensors Implemented on the CP6003-SA/RA/RC	24
7.1	Sensor List	
7.2		
7.3	OEM Event/Reading Types	
8. I	PMI Firmware Code	31
8.1	Structure and Functionality	31
8.2	uEFI BIOS/IPMI Controller Interaction	31
8.3	IPMI Firmware Configuration	31
8.4	Firmware Identification	32
8.5	Firmware Upgrade	32
8	8.5.1 Firmware File Formats	32
8	3.5.2 Firmware Upgrade - "ipmitool hpm"	33
8	3.5.3 Firmware Upgrade - "ipmitool fwum"	34
8.6	Setting the SEL Time	34
8.7	IPMI Firmware Write Protection	34
9. F	FRU Data	35
9.1	Structure and Functionality	35
9.2	FRU Version Identification	35
9.3	Board-Specific FRU Data	35
9.4	FRU Data Update	36
9.5	FRU Data Write Protection	36
10.)	(MC Card Support	36
37	IEFI BIOS Failover Control - Automatic SPI Boot Flash	
11.	1 Automatic SPI Boot Flash Selection During the Boot Process	3/

11.2 OS Boot Order Selection by OEM IPMI	37
12. Hot Swap and Shutdown	38
12.1 Hot Swap Handle and Hot Swap (Blue) LED	38
12.2 The Hot Swap and Shutdown Processes	39
13. LAN Functions	40
13.1 Overview	40
13.2 Setting Up the Ethernet Channel	40
13.3 Basic Setup from uEFI Shell	41
13.4 Setup by "ipmitool" or IPMI Commands	41
13.5 Setup of User Accounts and Password	41
13.6 IPMI Over LAN (IOL)	42
13.7 Serial Over LAN (SOL)	42
14. OS Support / Tools	43
14.1 Linux Tools	43
14.2 OS Support - Board Support Packages	43
15. IPMI and Hot Swap LEDs	44

This page has been intentionally left blank.

Page 6 ID 1045-5656, Rev. 2.0

List of Tables

1	Terminology and Acronym Definitions	9
2	Related Publications	11
3	Standard IPMI Commands	15
4	AdvancedTCA and AMC Commands	20
5	Get Device ID Command with OEM Extensions	21
6	Set Firmware Parameters	22
7	Set Control State	23
8	Get Control State	24
9	Sensor List	25
10	Gigabit Ethernet Link Sensor Assignment	27
11	Thresholds - Standard Temperature Range	28
12	Voltage Sensor Thresholds	28
13	OEM Event/Reading Types	29
14	IPMI and Hot Swap LEDs Function	45

This page has been intentionally left blank.

Page 8 ID 1045-5656, Rev. 2.0

1. Introduction

1.1 Terminology and Acronym Definitions

The following table provides descriptions for terms and acronyms used in this guide. The descriptions are derived primarily from the IPMI specifications.

Table 1: Terminology and Acronym Definitions

TERM or ACRONYM	DESCRIPTION
ВМС	Baseboard Management Controller Each board is equipped with an IPMI controller acting either as a BMC or as an SMC. However, in a CompactPCI chassis, there can be only one BMC present. The BMC administrates the SEL and the SDRR for the complete system. The BMC is connected to the other boards in the shelf via a dedicated bus (IPMB-0). The CP6003-SA/RA/RC's IPMI controller can be configured to operate in SMC mode or in BMC mode via an IPMI OEM command or an uEFI Shell command. The factory setting is SMC.
BSP	Board Support Package
FRU	Field Replaceable Unit Every board is a FRU. The FRU data contains information about the board such as the part number and the serial number. See PICMG Specification 2.9 for complete details on the FRU data structure. The free Linux tool "ipmitool" can be used to update or display the FRU data.
FWH	Firmware Hub memory location where a complete uEFI BIOS code is stored.
I ² C	Inter-Integrated Circuit
IPMB	Intelligent Platform Management Bus The dedicated I ² C management bus where the BMC and the SMCs communicate.
IPMB-0	Intelligent Platform Management Bus which connects all SMCs with the BMC or the shelf manager.
IPMI	Intelligent Platform Management Interface
IOL	IPMI over LAN. An IPMI controller is accessed via LAN, not IPMB.
KCS	Keyboard Controller Style (Interface) This is the IPMI mandatory interface on the host system (payload) to communicate with the BMC.
MP	Management Power This powers the BMC or SMC controller.
PICMG	PCI Industrial Computer Manufacturer Group

ID 1045-5656, Rev. 2.0

Table 1: Terminology and Acronym Definitions (Continued)

TERM or ACRONYM	DESCRIPTION
PWR	Payload Power. This powers the host side of the board where the application software runs. It is granted by the BMC or the SMC after all prerequisites are met. Prerequisites can be, for example, a closed handle switch, power on the backplane etc.
SDR	Sensor Data Record This is the IPMI data structure that defines a sensor.
SDRR	Sensor Data Record Repository The SDRR is located in the BMC and contains all SDRs of the chassis' boards that are administrated. A free Linux utility named "ipmitool" makes a full chassis discovery and fills the SDRR with the SDRs being found.
SEL	System Event Log The SEL is located in the BMC and keeps track of all events in the chassis. If an event occurs on any board, the sensor event is sent through the IPMB bus to the BMC, which additionally stores its own events as well.
SMBIOS	System Management BIOS
SMC	Satellite Management Controller Each board is equipped with an IPMI controller acting either as a BMC or as an SMC. In a CompactPCI chassis, there can be several SMCs. The SMC administrates the sensor and FRU data of the CP6003-SA/RA/RC and makes it available to the BMC. Each SMC can be connected to the BMC via a dedicated bus (IPMB-0). The CP6003-SA/RA/RC's IPMI controller can be configured to operate in SMC mode or in BMC mode via an IPMI OEM command or an uEFI Shell command. The factory setting is SMC.
SMS	System Management Software (designed to run under the OS)
SOL	Serial over LAN A serial interface is redirected by LAN using the RMCP+ protocol.

Page 10 ID 1045-5656, Rev. 2.0

1.2 Related Publications

The following publications contain information relating to this product.

Table 2: Related Publications

PRODUCT	PUBLICATION	
IPMI	IPMI Specification V2.0	
IPMI	IPMI- Platform Management FRU Information Storage Definition v1.0, Document Revision 1.1	
IPMI	Addenda, Errata, and Clarifications document revision 4 for IPMI v2.0 rev 1.0 specification	
IPMI Intelligent Platform Management Bus Communications Protocol Specification Document Revision 1.0, November 1999		
IPMI	IPMB v1.0 Address Allocation Document Revision 1.0, September 1998	
PICMG	CompactPCI System Management Specification PICMG 2.9 Rev. 1.0 CompactPCI Hot Swap Specification PICMG 2.1 Rev. 2.0 PICMG® AMC.0 R2.0, Advanced Mezzanine Card Base Specification, Nov. 15, 2006	
CP6003-SA/RA/RC	CP6003-SA/RA/RC User Guide CP6003-SA/RA/RC uEFI BIOS User Guide CP6003-SA/RA/RC Linux Board Support Package	
IPMI Tools	"ipmitool" documentation: http://ipmitool.sourceforge.net	
IPMI Tools	OpenIPMI documentation: http://www.openipmi.sourceforge.net	

1.3 IPMI Overview

This product fully supports the Intelligent Platform Management Interface and PICMG 2.9 R1.0 specifications. All of its IPMI functionality operates under an autonomous management controller even if the board is held in reset or power-down mode by a management card within a system designed for high availability.

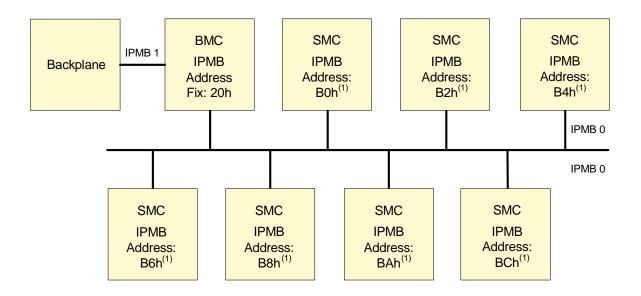
While the CP6003-SA/RA/RC IPMI implementation is fully compliant with IPMI v2.0 and has been designed to operate with any system management software (SMS) that respects this specification, can be easily integrated with the Service Availability Forum-Hardware Platform Interface (SAF-HPI) specification.

More information about Service Availability can be found on the following website:

http://www.saforum.org/home

IPMI is an extensible and open standard that defines autonomous system monitoring. It is autonomous because every management controller within a CompactPCI chassis monitors its own sensors and sends critical events through a dedicated bus to the BMC that logs it into a non-volatile System Event Log (SEL). The CP6003-SA/RA/RC IPMI implementation includes a device SDR repository module that allows the user's system management software to detect all system components and build a database of all management controller sensors.

For further information concerning IPMI refer to the following website:


http://www.intel.com/design/servers/ipmi/

2. IPMI Setup

2.1 IPMI in a CompactPCI Chassis

Kontron's IPMI implementation in the CompactPCI environment is compliant with the PICMG 2.9 R1.0 specification. This specification defines the pinout of the J1 and J2 CompactPCI connectors as well as the addressing scheme. There should be only one BMC in the chassis, or at least on the IPMB segment. The BMC may reside either on an CP6003-SA/RA/RC, or on an external system management card, or in a shelf management controller (ShMC). The specification allows all of these variants. As a BMC in the system slot, the CP6003-SA/RA/RC supports dual-ported IPMB (IPMB-0 to the SMCs and IPMB-1 to the external segments via the CompactPCI backplane connector in accordance with PICMG 2.9).

⁽¹⁾ IPMB address for SMC is determined via the location of the slot in the chassis

To use the IPMI resources in a rack requires an initial setup for IPMI operation. The following actions must first be performed to achieve operable IPMI functionality.

2.2 IPMI Setup for the CP6003-SA/RA/RC

Initially the default configuration for the IPMI controller of the CP6003-SA/RA/RC is:

- IRQ = none
- MODE = SMC
- IPMB = single-ported.

If this is the required configuration, no further action is required. If the configuration must be modified, either the **kipmi** uEFI Shell command or one of the open tools "ipmitool" or "ipmicmd" may be used to modify the configuration as required.

Page 12 ID 1045-5656, Rev. 2.0

Fur further information on the **kipmi** uEFI Shell command, refer to the CP6003-SA/RA/RC uEFI BIOS User Guide. When uEFI BIOS stores the configuration, it creates an "IPMI Device Information Record" entry in the SMBIOS table. This record contains information, among others, about:

- Type of the supported interface (KCS style)
- Selected interrupt (10, 11 or none).

This information is required by the CP6003-SA/RA/RC payload's IPMI OS kernel drivers for Linux during their loading time. After the loading, most available IPMI communications tools which access the IPMI controller via IPMI OS drivers should work (e.g. "ipmicmd", "ipmitool", etc.).

Now it is possible to use such a tool to issue the **Set Firmware Parameters** OEM IPMI command to modify the configuration again. Changing the interrupt number always requires a uEFI BIOS restart for a correct setup of the SMBIOS table.

2.3 IPMI Setup for the Rack

For a working IPMI configuration the SDRR of the BMC must be filled with all sensor data records of all IPMI controllers in the rack. After every system start the BMC uses the SDRR to initialize all sensors of all boards. The SDRR setup must be done by a management tool e.g. the open Linux tool "ipmitool". Then the command is:

ipmitool sdr fill sensors

This will work only if the IPMI controller configured as BMC is addressed. This addressing is the default if the "ipmitool" is running on the payload side of the board where the BMC is residing.

3. IPMI Controller Hardware

On the CP6003-SA/RA/RC, the IPMI controller is implemented using the NXP ARM7 microcontroller with 512 kB of internal flash and 56 kB of RAM.

An external 64 kB serial EEPROM chip is used for firmware private data and FRU inventory storage. An additional external 2 MB serial SPI flash is used for redundant firmware image storage.

The IPMI controller implements a local Keyboard Controller Style (KCS) interface (KCS) with interrupt support for communication with system-side management software and the uEFI BI-OS. The IPMB bus is used for interconnection with the BMC or the shelf manager.

IPMI over LAN (IOL) and Serial Over LAN (SOL) are supported on four Ethernet channels (GbE A – GbE D) of the board. SOL is only available on one Ethernet channel at a time.

The IPMI controller provides access to various board sensors which permit the monitoring of:

- System power voltages: 5V (PWR), 3.3V, IPMI 5V, 12V, IPMI controller supply 4.7V
- Temperatures: CPU die, chipset, and board temperature
- Power Good, IPMB-0 link, board reset, POST code, boot error, CPU states (processor hot, THERMTRIP, ...), IPMB-L state, Health error, IPMI watchdog etc.

4. IPMI Firmware

4.1 Key Features

The following are key features of the CP6003-SA/RA/RC's IPMI firmware:

- · Compliant with IPMI specification 2.0
- Compliant with PICMG 2.9 specification
- Firmware designed and specially made for CompactPCI implementation and easy integration with SAF-HPI
- KCS SMS interface with interrupt support
- Dual-port IPMB support
- Out-of-band management and monitoring using the IPMB interface permits access to sensors regardless of the board's CPU state
- · Sensor thresholds fully configurable
- Sensor names prefixed with identification of owner (BMC without slot number or SMC with slot number)
- Complete IPMI watchdog functionality
- Complete SEL, SDR repository and FRU functionality on BMC
- · Complete FRU functionality
- Master Write-Read I²C support for external I²C devices communications (FRU, EEPROM, FAN)
- Two IPMI firmware banks allow an automatic backup
 This allows manual and automatic firmware image roll-back (in case of an upgrade failure).
- The downloading of a new firmware image does not break currently running firmware or payload activities.
- Firmware bank management is done by the open tool "ipmitool" function "fwum" which can update the firmware in the field.
- Firmware fully customizable via OEM IPMI commands to satisfy customer requirements
- Interoperable with other IPMI solutions
- OEM board supervision and control extensions such as boot flash selection and firmware boot order configuration
- Automatic switching to an alternative uEFI image after having detected an inoperable uEFI BIOS
- IPMI over LAN (IOL) support
- Serial over LAN (SOL) support
- Graceful shutdown support
- Handle switch and blue Hot Swap LED operation
- The IO and I1 LEDs indicate operational status of the IPMI firmware.
- The board's write protection feature for non-volatile memories is supported. These memories are:
 - I²C EEPROM for FRU data and parameters
 - · SPI flash memory for firmware banks

5. Supported IPMI and ATCA Commands

5.1 Standard IPMI Commands

The following table shows an excerpt from the command list specified in the IPMI specification 2.0. The shaded table cells indicate commands supported by the CP6003-SA/RA/RC IPMI firmware.

M = mandatory, O = optional

Table 3: Standard IPMI Commands

COMMAND	IPMI 2.0 SPEC. SECTION	NETFN	CMD	KONTRON SUPPORT ON IPMI CONTROLLER
IPM DEVICE "GLOBAL" COMMANDS				M
Get Device ID	20.1	Арр	01h	M / Yes [1]
Cold Reset	20.2	Арр	02h	O / Yes
Warm Reset	20.3	Арр	03h	O / No
Get Self Test Results	20.4	Арр	04h	O / Yes
Manufacturing Test On	20.5	Арр	05h	O / No
Set ACPI Power State	20.6	Арр	06h	O / Yes
Get ACPI Power State	20.7	Арр	07h	O / Yes
Get Device GUID	20.8	Арр	08h	O / No
Broadcast "Get Device ID"	20.9	Арр	01h	M / Yes
BMC WATCHDOG TIMER COMMANDS				0
Reset Watchdog Timer	27.5	Арр	22h	O / Yes
Set Watchdog Timer	27.6	Арр	24h	O / Yes
Get Watchdog Timer	27.7	Арр	25h	O / Yes
BMC DEVICE AND MESSAGING COMMA	NDS			0
Set BMC Global Enables	22.1	Арр	2Eh	O / Yes
Get BMC Global Enables	22.2	Арр	2Fh	O / Yes
Clear Message Flags	22.3	Арр	30h	O / Yes
Get Message Flags	22.4	Арр	31h	O / Yes
Enable Message Channel Receive	22.5	Арр	32h	O / Yes
Get Message	22.6	Арр	33h	O / Yes
Send Message	22.7	Арр	34h	O / Yes
Read Event Message Buffer	22.8	Арр	35h	O / Yes
Get BT Interface Capabilities	22.9	Арр	36h	O / No

ID 1045-5656, Rev. 2.0

Table 3: Standard IPMI Commands (Continued)

COMMAND	IPMI 2.0 SPEC. SECTION	NETFN	CMD	KONTRON SUPPORT ON IPMI CONTROLLER
Get System GUID	22.14	Арр	37h	O / No
Get Channel Authentication Capabilities	22.13	Арр	38h	O / Yes
Get Session Challenge	22.15	Арр	39h	O / Yes
Activate Session	22.17	Арр	3Ah	O / Yes
Set Session Privilege Level	22.18	Арр	3Bh	O / Yes
Close Session	22.19	Арр	3Ch	O / Yes
Get Session Info	22.20	Арр	3Dh	O / Yes
Get AuthCode	22.21	Арр	3Fh	O / No
Set Channel Access	22.22	Арр	40h	O / Yes
Get Channel Access	22.23	Арр	41h	O / Yes
Get Channel Info	22.24	Арр	42h	O / Yes
Set User Access	22.26	Арр	43h	O / Yes
Get User Access	22.27	Арр	44h	O / Yes
Set User Name	22.28	Арр	45h	O / Yes
Get User Name	22.29	Арр	46h	O / Yes
Set User Password	22.30	Арр	47h	O / Yes
Activate Payload	24.1	Арр	48h	O / Yes
Deactivate Payload	24.2	Арр	49h	O / Yes
Get Payload Activation Status	24.4	Арр	4Ah	O / Yes
Get Payload Instance Info	24.5	Арр	4Bh	O / Yes
Set User Payload Access	24.6	Арр	4Ch	O / Yes
Get User Payload Access	24.7	Арр	4Dh	O / Yes
Get Channel Payload Support	24.8	Арр	4Eh	O / Yes
Get Channel Payload Version	24.9	Арр	4Fh	O / Yes
Get Channel OEM Payload Info	24.10	Арр	50h	O / No
Master Write-Read	22.11	Арр	52h	O / Yes
Get Channel Cipher Suits	22.15	Арр	54h	O / No
Suspend/Resume Payload Encryption	24.3	Арр	55h	O / Yes
Set Channel Security Keys	22.25	Арр	56h	O / No
Get System Interface Capabilities	22.9	Арр	57h	O / No
CHASSIS DEVICE COMMANDS				0
Get Chassis Capabilities	28.1	Chassis	00h	O / Yes

Page 16 ID 1045-5656, Rev. 2.0

Table 3: Standard IPMI Commands (Continued)

COMMAND	IPMI 2.0 SPEC. SECTION	NETFN	CMD	KONTRON SUPPORT ON IPMI CONTROLLER
Get Chassis Status	28.2	Chassis	01h	O / Yes
Chassis Control	28.3	Chassis	02h	O / Yes
Chassis Reset	28.4	Chassis	03h	O / No
Chassis Identify	28.5	Chassis	04h	O / No
Set Chassis Capabilities	28.7	Chassis	05h	O / No
Set Power Restore Policy	28.8	Chassis	06h	O / No
Get System Restart Cause	28.11	Chassis	07h	O / No
Set System Boot Options	28.12	Chassis	08h	O / No
Get System Boot Options	28.13	Chassis	09h	O / No
Get POH Counter	28.14	Chassis	0Fh	O / Yes
EVENT COMMANDS	•			M
Set Event Receiver	29.1	S/E	00h	M / Yes
Get Event Receiver	29.2	S/E	01h	M / Yes
Platform Event (a.k.a. "Event Message")	29.3	S/E	02h	M / Yes
PEF AND ALERTING COMMANDS	•			0
Get PEF Capabilities	30.1	S/E	10h	O / No
Arm PEF Postpone Timer	30.2	S/E	11h	O / No
Set PEF Configuration Parameters	30.3	S/E	12h	O / No
Get PEF Configuration Parameters	30.4	S/E	13h	O / No
Set Last Processed Event ID	30.5	S/E	14h	O / No
Get Last Processed Event ID	30.6	S/E	15h	O / No
Alert Immediate	30.7	S/E	16h	O / No
PET Acknowledge	30.8	S/E	17h	O / No
SENSOR DEVICE COMMANDS				M
Get Device SDR Info	35.2	S/E	20h	M / Yes
Get Device SDR	35.3	S/E	21h	M / Yes
Reserve Device SDR Repository	35.4	S/E	22h	M / Yes
Get Sensor Reading Factors	35.5	S/E	23h	O / No
Set Sensor Hysteresis	35.6	S/E	24h	O / Yes
Get Sensor Hysteresis	35.7	S/E	25h	O / Yes
Set Sensor Threshold	35.8	S/E	26h	O / Yes
Get Sensor Threshold	35.9	S/E	27h	O / Yes

Table 3: Standard IPMI Commands (Continued)

COMMAND	IPMI 2.0 SPEC. SECTION	NETFN	CMD	KONTRON SUPPORT ON IPMI CONTROLLER
Set Sensor Event Enable	35.10	S/E	28h	O / Yes
Get Sensor Event Enable	35.11	S/E	29h	O / Yes
Re-arm Sensor Events	35.12	S/E	2Ah	O / No
Get Sensor Event Status	35.13	S/E	2Bh	O / No
Get Sensor Reading	35.14	S/E	2Dh	M / Yes
Set Sensor Type	35.15	S/E	2Eh	O / No
Get Sensor Type	35.16	S/E	2Fh	O / No
FRU DEVICE COMMANDS				М
Get FRU Inventory Area Info	34.1	Storage	10h	M / Yes
Read FRU Data	34.2	Storage	11h	M / Yes
Write FRU Data	34.3	Storage	12h	M / Yes
SDR DEVICE COMMANDS				0
Get SDR Repository Info	33.9	Storage	20h	O / Yes
Get SDR Repository Allocation Info	33.10	Storage	21h	O / Yes
Reserve SDR Repository	33.11	Storage	22h	O / Yes
Get SDR	33.12	Storage	23h	O / Yes
Add SDR	33.13	Storage	24h	O / Yes
Partial Add SDR	33.14	Storage	25h	O / Yes
Delete SDR	33.15	Storage	26h	O / Yes
Clear SDR Repository	33.16	Storage	27h	O / Yes
Get SDR Repository Time	33.17	Storage	28h	O / No
Set SDR Repository Time	33.18	Storage	29h	O / No
Enter SDR Repository Update Mode	33.19	Storage	2Ah	O / No
Exit SDR Repository Update Mode	33.20	Storage	2Bh	O / No
Run Initialization Agent	33.21	Storage	2Ch	O / Yes
SEL DEVICE COMMANDS	0			
Get SEL Info	40.2	Storage	40h	O / Yes
Get SEL Allocation Info	40.3	Storage	41h	O / Yes
Reserve SEL	40.4	Storage	42h	O / Yes
Get SEL Entry	40.5	Storage	43h	O / Yes
Add SEL Entry	40.6	Storage	44h	O / Yes

Page 18 ID 1045-5656, Rev. 2.0

Table 3: Standard IPMI Commands (Continued)

COMMAND	IPMI 2.0 SPEC. SECTION	NETFN	CMD	KONTRON SUPPORT ON IPMI CONTROLLER
Partial Add SEL Entry	40.7	Storage	45h	O / No
Delete SEL Entry	40.8	Storage	46h	O / Yes
Clear SEL	40.9	Storage	47h	O / Yes
Get SEL Time	40.10	Storage	48h	O / Yes
Set SEL Time	40.11	Storage	49h	O / Yes
Get Auxiliary Log Status	40.12	Storage	5Ah	O / No
Set Auxiliary Log Status	40.13	Storage	5Bh	O / No
LAN DEVICE COMMANDS				0
Set LAN Configuration Parameters	23.1	Transport	01h	O / Yes
Get LAN Configuration Parameters	23.2	Transport	02h	O / Yes
Suspend BMC ARPs	23.3	Transport	03h	O / No
Get IP/UDP/RMCP Statistics	23.4	Transport	04h	O / Yes
SERIAL/MODEM DEVICE COMMANDS				0
Set Serial/Modem Configuration	25.1	Transport	10h	O / No
Get Serial/Modem Configuration	25.2	Transport	11h	O / No
Set Serial/Modem Mux	25.3	Transport	12h	O / No
Get TAP Response Codes	25.4	Transport	13h	O / No
Set PPP UDP Proxy Transmit Data	25.5	Transport	14h	O / No
Get PPP UDP Proxy Transmit Data	25.6	Transport	15h	O / No
Send PPP UDP Proxy Packet	25.7	Transport	16h	O / No
Get PPP UDP Proxy Receive Data	25.8	Transport	17h	O / No
Serial/Modem Connection Active	25.9	Transport	18h	O / No
Callback	25.10	Transport	19h	O / No
Set User Callback Options	25.11	Transport	1Ah	O / No
Get User Callback Options	25.12	Transport	1Bh	O / No
SOL Activating	26.1	Transport	20h	O / Yes
Get SOL Configuration Parameters	26.2	Transport	21h	O / Yes
Set SOL Configuration Parameters	26.3	Transport	22h	O / Yes

[1] Has OEM extensions. Please refer to 6.1, Get Device ID Command with OEM Extensions.

Note ...

Some of the above-mentioned commands, such as SDR commands, work only if the IPMI controller is configured as BMC. For further information, refer to the IPMI specification 2.0.

5.2 AdvancedTCA and AMC Commands

The following table shows an excerpt from the command list specified in the PICMG 3.0 R 2.0 AdvancedTCA Base Specification and the PICMG AMC.0 Advanced Mezzanine Card Specification, R 1.0. The shaded table cells indicate commands supported by the IPMI firmware.

M = mandatory

Table 4: AdvancedTCA and AMC Commands

COMMAND	PICMG 3.0 SPEC. TABLE	NETFN	CMD	KONTRON SUPPORT ON IPMI CONTROLLER
AdvancedTCA				M
Get PICMG Properties	3-9	PICMG	00h	M / Yes
Get Address Info	3-8	PICMG	01h	N/A
Get Shelf Address Info	3-13	PICMG	02h	N/A
Set Shelf Address Info	3-14	PICMG	03h	N/A
FRU Control	3-22	PICMG	04h	N/A
Get FRU LED Properties	3-29	PICMG	05h	M / Yes
Get LED Color Capabilities	3-25	PICMG	06h	M / Yes
Set FRU LED State	3-26	PICMG	07h	M / Yes
Get FRU LED State	3-27	PICMG	08h	M / Yes
Set IPMB State	3-51	PICMG	09h	N/A
Set FRU Activation Policy	3-17	PICMG	0Ah	N/A
Get FRU Activation Policy	3-18	PICMG	0Bh	N/A
Set FRU Activation	3-16	PICMG	0Ch	N/A
Get Device Locator Record ID	3-29	PICMG	0Dh	M / Yes
Set Port State	3-41	PICMG	0Eh	N/A
Get Port State	3-42	PICMG	0Fh	N/A
Compute Power Properties	3-60	PICMG	10h	N/A
Set Power Level	3-62	PICMG	11h	N/A
Get Power Level	3-61	PICMG	12h	N/A
Renegotiate Power	3-66	PICMG	13h	N/A
Get Fan Speed Properties	3-63	PICMG	14h	N/A
Set Fan Level	3-65	PICMG	15h	N/A
Get Fan Level	3-64	PICMG	16h	N/A
Bused Resource	3-44	PICMG	17h	N/A
Get IPMB Link Info	3-49	PICMG	18h	N/A

Page 20 ID 1045-5656, Rev. 2.0

6. **OEM Commands and Command Extensions**

6.1 Get Device ID Command with OEM Extensions

The IPMI specification defines four optional bytes in the response to **Get Device ID**. The response bytes [13:16] hold the "Auxiliary Firmware Revision Information".

Table 5: Get Device ID Command with OEM Extensions

	COMMAND	LUN	NetFn	CMD	
Get Dev	vice ID command with OEM extensions	00h	App = 06h	01h	
	REQUEST DA	ГА			
Byte	Data Field				
-	-				
	RESPONSE DA	ATA			
Byte	Data Field				
1	Completion Code				
2:12	Regular Get Device ID Command response fields				
13	Release number of the IPMI firmware:				
	10h for R10,				
	11h for R11,				
	Release number 1 of the IPMI firmware. The op the response to the command "ipmitool fwum stat	•	displays this as "S	DR" in	
14	Board Geographical Address (slot number):				
	1 = Board in chassis slot 1				
15	Reserved				
16	Reserved				

6.2 Set Firmware Parameters

This command permits the selection of interrupts to be used during KCS communication.

Please note that parameters which are set while the board is write-protected are valid only until the next IPMI firmware reset.

Table 6: Set Firmware Parameters

	COMMAND	LUN	NetFn	CMD
Set Firr	nware Parameters	03h	OEM = 3Eh	05h
	REQUEST DA	ГА		
Byte	Data Field			
1	Reserved B4h			
2	Reserved 90h			
3	Reserved 91h			
4	Reserved 8Bh			
5	Cmd Flags [6:2] Reserved [1] 0b = get only, 1b = set parameters [0] 0b = do not reset, 1b = reset IPMI controller a	fter setting parame	eters	
6	Operating Modes [7:5] Reserved [4] 0b = IPMB dual-ported, 1b = IPMB single-port [3] 1b = IPMB off [2:1] Reserved [0] 0b = BMC, 1b = SMC	ed (default)		
7	IRQ number FFh = do not use interrupts 0Ah = use IRQ10 0Bh = use IRQ11 Any other values = Reserved			
	RESPONSE DA	ATA		
Byte	Data Field			
1	Completion code			
2	Cmd flags			
3	Operating modes			
4	IRQ number			

Page 22 ID 1045-5656, Rev. 2.0

6.3 Set Control State (SPI Boot Flash, Boot Order)

Please note that parameters which are set while the board is write-protected are valid only until the next IPMI firmware reset.

Table 7: Set Control State

	COMMAND	LUN	NetFn	CMD		
Set Cor	ntrol State (SPI Boot Flash, Boot Order)	00h	OEM = 3Eh	20h		
	REQUEST DA	ГА				
Byte	Data Field					
1	Control ID:					
	00h: SPI boot flash selection 9Dh: uEFI BIOS Boot Order Configuration					
2	Control State for SPI boot flash selection:					
	(These settings are stored in EEPROM and appli- detects power-on)	ed (to logic) each t	ime the IPMI cont	roller		
	00h = Standard SPI boot flash is selected (defaul	t)				
	01h = Recovery SPI boot flash is selected					
	The DIP switch SW1, switch 2, may overwrite this Chapter 11.1, Automatic SPI Boot Flash Selection CP6003-SA/RA/RC User Guide.					
	In case of a failing boot process and default setting, the IPMI controller will select the recovery boot flash and boot the board again. In case of a boot failure from the recovery SPI boot flash, the board locks up.					
	Control State for uEFI BIOS Boot Order Config	juration:				
	(These settings are stored in EEPROM and appli- detects power-on)	ed (to logic) each t	ime the IPMI cont	roller		
	00h 07h = Selected uEFI BIOS Boot Order Co	· ·				
	00h selects the default Boot Order in the uEFI Bl	OS menu.				
	uEFI BIOS Boot Order Configuration:					
	00h = Boot order is according to uEFI BIOS setup 01h = Next boot device is: Floppy	o (default)				
	02h = Next boot device is: Floppy 02h = Next boot device is: HDD					
	03h = Next boot device is: CD					
	04h = Next boot device is: Network					
	05h = Next boot device is: USB Floppy					
	06h = Next boot device is: USB HDD 07h = Next boot device is: USB CD-ROM					
	RESPONSE DA	TA				
Byte	Data Field					
1	Completion Code					

6.4 Get Control State (SPI Boot Flash, Boot Order)

Table 8: Get Control State

	COMMAND	LUN	NetFn	CMD
Get Cor	ntrol State (SPI Boot Flash, Boot Order)	00h	OEM = 3Eh	21h
	REQUEST DA	ГА		
Byte	Data Field			
1	Control ID: 00h = SPI boot flash selection 9Dh = uEFI BIOS Boot Order Configuration			
	RESPONSE DA	ATA		
Byte	Data Field			
1	Completion Code			
4	Current Control State (see Chapter 6.3, Set Cont 00h 01h for control ID = SPI boot flash selection 00h FFh for control ID = uEFI BIOS Boot Orde	on .		

Sensors Implemented on the CP6003-SA/RA/RC

The IPMI controller includes several sensors for voltage or temperature monitoring and various others for pass/fail type signal monitoring.

Every sensor is associated with a Sensor Data Record (SDR). Sensor Data Records contain information about the sensor's identification such as sensor type, sensor name, and sensor unit. SDRs also contain the configuration of a specific sensor such as threshold, hysteresis or event generation capabilities that specify sensor's behavior. Some fields of the sensor SDR are configurable using IPMI commands; others are always set to built-in default values.

The IPMI controller supports sensor device commands and uses the static sensor population feature of IPMI. All Sensor Data Records can be queried using Device SDR commands.

The sensor name (ID string) has a name prefix which is 'NNN:' in the lists below. When reading the sensor name after board insertion, this prefix becomes automatically adapted to the role (BMC or SMC) and the physical position (slot number) of the board in a rack. If the IPMI controller is set up as a BMC, the prefix will be 'BMC:' independent of the slot where it resides. If the IPMI controller is set up as an SMC, the prefix will be 'Sxx:' where xx is the slot number (e.g. 09).

The sensor number is the number which identifies the sensor e.g. when using the IPMI command Get Sensor Reading. Please note that "ipmitool" accepts sensor numbers in decimal (e.g. "10") or hexadecimal (e.g. "0xa") notation.

The IPMI tool "ipmitool" displays for the command "ipmitool sdr list" the contents of the sensor data record repository (SDRR) of the whole rack if the SDRR has been generated. The generation of the SDRR must always be redone after adding or removing a board from the rack. Refer to Chapter 2.3, IPMI Setup for the Rack for further information.

Page 24 ID 1045-5656, Rev. 2.0

7.1 Sensor List

The following table indicates all sensors available on the CP6003-SA/RA/RC. For further information on Kontron's OEM-specific sensor types and sensor event type codes presented in the following table, please refer to Chapter 7.3, OEM Event/Reading Types.

Table 9: Sensor List

SENSOR NUMBER/ ID STRING	SENSOR TYPE (CODE) / EVENT/READING TYPE (CODE)	Ass. Mask / Deass. Mask / Reading Mask	DESCRIPTION	LED I1on error / Reading Mask
00h / NNN:Hot Swap	Hot Swap (F0h) / Sensor-specific (6Fh)	001Fh / 0000h / 001Fh	Hot swap sensor	N
01h / NNN:Temp CPU	Temperature (01h) / Threshold (01h)	1A81h / 7A81h / 3939h	CPU die temperature	Y / 0F3Ch
02h / NNN:Temp Chipset	Temperature (01h) / Threshold (01h)	0A80h / 7A80h / 3838	Temp Chipset	Y / 0F3Ch
03h / NNN:Temp Board	Temperature (01h) / Threshold (01h)	7A95h / 7A95h / 3F3F	Temp Board	Y / 0F3Ch
04h / NNN:Pwr Good	Power supply (08h) / OEM (73h)	0000h / 0000h / 009Fh	Status of all power lines	N
05h / NNN:Pwr Good Evt	Power supply (08h) / OEM (73h)	009Fh / 009Fh / 009Fh	Power fail events for all power lines	Y / 009Fh
06h / NNN:Board 3.3V	Voltage (02h) / Threshold (01h)	2204h / 2204h / 1212h	Board 3.3V supply	Y / 0F3Ch
07h / NNN:Board 5VIPMI	Voltage (02h) / Threshold (01h)	2204h / 2204h / 1212h	Management Power (MP) 5V	Y / 0F3Ch
08h / NNN:Board 5V	Voltage (02h) / Threshold (01h)	2204h / 2204h / 1212h	Board 5V supply	Y / 0F3Ch
09h / NNN:Board 12V	Voltage (02h) / Threshold (01h)	2204h / 2204h / 1212h	Board 12V supply	Y / 0F3Ch
0Ah / NNN:IPMB 5V	Voltage (02h) / Threshold (01h)	2204h / 2204h / 1212h	IPMB 5V supply	N
OBh / NNN:Fan1 Speed	Fan (04h) / Threshold (01h)	0000h / 0000h / 1B1Bh	Speed [rpm] Fan 1	N
OCh / NNN:Fan2 Speed	Fan (04h) / Threshold (01h)	0000h / 0000h / 1B1Bh	Speed [rpm] Fan 2	N
ODh / NNN:Last Reset	OEM (CFh) / "digital" Discrete (03h)	0002h / 0000h / 0003h	Board reset event	Y / 0002h
0Eh / NNN:Slot System	Entity presence (25h) / Sensor-specific (6Fh)	0000h / 0000h / 0003h	Board is in system slot (SYSEN)	N
0Fh / NNN:PCI Present	Entity presence (25h) / Sensor-specific (6Fh)	0000h / 0000h / 0003h	Board is selected (BDSEL) and in system slot (SYSEN)	N
10h / NNN:CTCA chassis	Entity presence (25h) / Sensor-specific (6Fh)	0000h / 0000h / 0003h	Value is always 1	N
11h / NNN:IPMI WD	Watchdog2 (23h) / Sensor-specific (6Fh)	010Fh / 0000h / 010Fh	IPMI Watchdog	Y / 010Fh
12h / NNN:IPMB State	IPMB status change (F1h) / Sensor-specific (6Fh)	000Fh / 0000h / 000Fh	IPMB-0 state (refer to PICMG 3.0 Rev 2.0, 3.8.4.1)	N
13h / NNN:ACPI State	System ACPI Power State (022h) / Sensor-specific (6Fh)	7FFFh / 0000h / 7FFFh	System ACPI power state	N

ID 1045-5656, Rev. 2.0

Table 9: Sensor List (Continued)

	, ,			
SENSOR NUMBER/ ID STRING	SENSOR TYPE (CODE) / EVENT/READING TYPE (CODE)	Ass. Mask / Deass. Mask / Reading Mask	DESCRIPTION	LED I1on error / Reading Mask
14h / NNN:Health Error	Platform Alert (24h) / "digital" Discrete (03h)	0000h / 0000h / 0003h	Aggregates states (power, temperatures etc.). Visualization by the Health LED (LED I1, red).	N
15h / NNN:CPU 0 Status	Processor (07h) / Sensor-specific (6Fh)	0463h / 0400h / 04E3h	CPU status: "Processor Throttled, THERMTRIP or CAT error"	Y / 0403h
16h / NNN:POST Value	POST value OEM (C6h) / Sensor-specific (6Fh)	4000h / 0000h / 40FFh	POST code value (port 80h)	N
17h / NNN:LanFrontA_Lk	LAN (27h) / Sensor-specific (6Fh)	0000h / 0000h / 0003h	LAN link status – Front Eth. port A (lower)	N
18h / NNN:LanFrontB_Lk	LAN (27h) / Sensor-specific (6Fh)	0000h / 0000h / 0003h	LAN link status – Front Eth. port B (upper)	N
19h / NNN:LanRearC_Lk	LAN (27h) / Sensor-specific (6Fh)	0000h / 0000h / 0003h	LAN link status – Rear Eth. port C	N
1Ah / NNN:LanRearD_Lk	LAN (27h) / Sensor-specific (6Fh)	0000h / 0000h / 0003h	LAN link status – Rear Eth. port D	N
1Bh / NNN:FWH0 BootErr	Boot error (1Eh) / Sensor-specific (6Fh)	0008h / 0008h / 0008h	Boot error on standard SPI boot flash	Y / 0008h
1Ch / NNN:FWH1 BootErr	Boot error (1Eh) / Sensor-specific (6Fh)	0008h / 0008h / 0008h	Boot error on recovery SPI boot flash	Y / 0008h
1Dh / NNN:XMC present	Entity Presence (25h) / Sensor-specific (6Fh)	0000h / 0000h / 0003h	Presence of XMC board	N
1Eh / NNN:FRU Agent	OEM FRU Agent (C5h) / Discrete (0Ah)	0140h / 0000h / 0147h	FRU initialization agent state	Y / 0140h
1Fh / NNN:IPMC Storage	Management Subsystem Health (28h) / Sensor-specific (6Fh)	0002h / 0000h / 0003h	IPMI controller storage access error	Y / 0002h
20h / NNN:IpmC Reboot	Platform Alert (24h) / "digital" Discrete (03h)	0002h / 0000h / 0003h	2 = IPMI controller is (re-)booting	N
21h / NNN:Ver change	Firmware version changed (2Bh) / Sensor-specific (6Fh)	0002h / 0000h / 0002h	Firmware version changed, update sensor data record repository	N
22h / NNN:SEL State	Event Logging Disabled (10h) / Sensor-specific (6Fh)	003Ch / 0000h / 003Ch	State of event logging	N
23h / NNN:IPMI Info-1	OEM Firmware Info 1 (C0h) / OEM (70h)	0003h / 0000h / 7FFFh	For internal use only	N
24h / NNN:IPMI Info-2	OEM Firmware Info 2 (C0h) / OEM (71h)	0003h / 0000h / 7FFFh	For internal use only	N
25h / NNN:IniAgent Err	Initialization Agent (C2h) / "digital" Discrete (03h)	0002h / 0000h / 0003h	Initialization agent error status. Used on BMC only. 1 = error free	Y / 0002h
26h / NNN:Board Rev	OEM Board Revision (CEh)/ Sensor-specific (6Fh)	0000h / 0000h / 7FFFh	Board revision information	N

Page 26 ID 1045-5656, Rev. 2.0

Table 10: Gigabit Ethernet Link Sensor Assignment

SENSOR NUMBER/	CP6003-SA	CP6003-RA	CP6003-RA/RC
ID STRING		GbE ROUTED TO FRONT	GbE ROUTED TO REAR
17h / NNN:LanFrontA_Lk	Front GbE A	GbE B	GbE D
18h / NNN:LanFrontB_Lk	Front GbE B	GbE A	GbE C
19h /	Rear GbE A	GbE A	GbE A
NNN:LanRearC_Lk	(Rear I/O module)	(Rear I/O module)	
1Ah /	Rear GbE B	GbE B	GbE B
NNN:LanRearD_Lk	(Rear I/O module)	(Rear I/O module)	

7.2 Sensor Thresholds

The following table provides the temperature sensor thresholds.

Table 11: Thresholds - Standard Temperature Range

Sensor Number / ID string	01h / NNN:Temp CPU	02h / NNN:Temp Chipset	03h / NNN:Temp Board	03h / NNN:Temp Board E2
Upper non-recoverable	110 °C	118 °C	85 °C	95 °C
Upper critical	100 °C	108 °C	80 °C	90 °C
Upper non-critical	90 °C	98 °C	70 °C	80 °C
Normal max.	85 °C	93 °C	65 °C	75 °C
Nominal	75 °C	83 °C	55 °C	65 °C
Normal min.	3 °C	3 °C	0 °C	0 °C
Lower non-critical	1 °C	n.a.	- 1 °C	- 40 °C
Lower critical	n.a.	n.a.	- 2 °C	- 42 °C
Lower non-recoverable	n.a.	n.a.	- 5 °C	- 45 °C

The following table provides the voltage sensor thresholds.

Table 12: Voltage Sensor Thresholds

Sensor Number / ID string	06h / NNN:Board 3.3V	07h / NNN:Board 5VIPMI	08h / NNN:Board 5V	09h / NNN:Board 12V	0Ah / NNN:Board IPMB 5V
Upper non-recoverable	n.a.	n.a.	n.a.	n.a.	n.a.
Upper critical	3.488 V	5.289 V	5.289 V	12.773 V	5.289 V
Upper non-critical	n.a.	n.a.	n.a.	n.a.	n.a.
Normal max.	3.460 V	5.245 V	5.245 V	12.598 V	5.245 V
Nominal	3.302 V	5.007 V	5.007 V	12.012 V	5.007 V
Normal min.	3.129 V	4.508 V	4.747 V	11.426 V	4.747 V
Lower non-critical	n.a.	n.a.	n.a.	n.a.	n.a.
Lower critical	3.101 V	4.465 V	4.703 V	11.250 V	4.703 V
Lower non-recoverable	n.a.	n.a.	n.a.	n.a.	n.a.

Page 28 ID 1045-5656, Rev. 2.0

7.3 OEM Event/Reading Types

OEM (Kontron) specific sensor types and codes are presented in the following table.

Table 13: OEM Event/Reading Types

OEM SENSOR TYPE (CODE)	OEM EVENT/READING TYPE (CODE)	DESCRIPTION	
Firmware Info 1 (C0h)	70h	Internal Diagnostic Data	
Firmware Info 2 (C0h)	71h	Internal Diagnostic Data	
Initialization Agent (C2h)	03h ("digital" Discrete)	Offsets / events: 0: Initialization O.K. 1: Initialization Error	
FRU Agent (C5h)	0Ah (Discrete)	FRU initialization agent, using a standard reading type.	
Post Value (C6h)	6Fh (sensor type specific)	Error is detected if the POST code is != 0 and doesn't change for a defined amount of time. In case of no error:	
		Bits [7:0] = POST code (payload Port 80h) In case of error: Bits [15:0] = 4000h Data2 = POST code, low nibble Data3 = POST code, high nibble	
Firmware Upgrade Manager (C7h)	6Fh (sensor type specific)	Offsets / events: 0 : First Boot after upgrade 1 : First Boot after rollback (error) 2 : First Boot after errors (watchdog) 3 : First Boot after manual rollback 47 : Reserved 8 : Firmware Watchdog Bite, reset occurred	
Board Reset (CFh)	03h ("digital" Discrete)	Data 2 contains the reset type:WARM = 0COLD = 1FORCED_COLD = 2SOFT_RESET = 3MAX = 4 Data 3 contains the reset source:IPMI_WATCHDOG = 0IPMI_COMMAND = 1PROC_INT_CHECKSTOP = 2PROC_INT_RST = 3RESET_BUTTON = 4POWER_UP = 5LEG_INITIAL_WATCHDOG = 6LEG_PROG_WATCHDOG = 7SOFTWARE_INITIATED = 8SETUP_RESET = 9UNKNOWN = 0xFF	

Table 13: OEM Event/Reading Types (Continued)

OEM SENSOR TYPE (CODE)	OEM EVENT/READING TYPE (CODE)	DESCRIPTION	
e.g. for Power Good /	73h	Sensor-specific Offset	Event
Power Good Event		0h	HS fault#
		1h	HS early fault#
		2h	DEG#
		3h	FAL#
		4h	BDSELState
		5h	n.a.
		6h	n.a.
		7h	vccMainGood
		8h	n.a.
		9h	n.a.
		Ah	n.a.
		Bh	n.a.
		Ch	n.a.
		Dh	n.a.
		Eh	n.a
Board revision (CEh)	6Fh	Bits [7:0] = Board Revision number	
	(sensor type specific)	This corresponds to Board and PLD Revision reg described in CP6003-SA/RA/RC User Guide.	

Page 30 ID 1045-5656, Rev. 2.0

8. IPMI Firmware Code

8.1 Structure and Functionality

The IPMI firmware code is organized into boot code and operational code, both of which are stored in a flash device. Upon an IPMI controller reset, the IPMI controller first executes the boot code which does:

- A self-test to verify the status of the IPMI controller's hardware including its memory
- Performs a checksum of the operational code

After successful verification of the operational code checksum, the firmware will execute the operational code. Only the operational code is upgradable in the field.

8.2 uEFI BIOS/IPMI Controller Interaction

For communication between the uEFI BIOS and the IPMI controller there is a "private" KCS interface. During the boot process the uEFI BIOS sends the following IPMI commands to the IPMI controller:

- An OEM command which reports a good or a bad checksum
- A standard IPMI command Set Watchdog Timer to stop a possibly running IPMI watchdog timer
- A standard IPMI command Set SEL Time to set the event log time to the time which is kept by the RTC
- The OEM IPMI command Set Firmware Parameters with some parameters which, for example, sets the IPMI controller to a BMC or an SMC as selected in the uEFI Shell.
- A standard IPMI command Set ACPI Power State to set the state ACPI legacy on
- Etc.

8.3 IPMI Firmware Configuration

To select the BMC or SMC mode, the **kipmi** uEFI Shell command (mode, IRQ functions) is used. Upon every board reset, the uEFI BIOS forwards the user settings (BMC or SMC mode) to the IPMI controller.

8.4 Firmware Identification

There are two ways to verify that a IPMI controller resides on a CP6003-SA/RA/RC.

Invoking the IPMI command Get Device ID returns among other information the following data:

- Manufacturer ID = 3A98h (Kontron IANA ID)
- Product ID = B3C0 for the firmware
- Firmware revision in bytes 4:5 depends on the core version of the running firmware.
- The SDR revision in byte 13 (OEM part of the response) is a sub-revision of the firmware revision. It is unique for all versions of the board's firmware.
- The device ID string which can be found by reading the Device Locator Record (SDR Type 12h) contains the string "BMC:x ... x". For example, invoking the ipmitool command ipmitool sdr list mcloc will return the device ID strings of all available boards. If the CP6003-SA/RA/RC's IPMI controller is in BMC mode, this string will be displayed without change. If the CP6003-SA/RA/RC's IPMI controller is in SMC mode, then the string will be changed into "Sxx: x ... x" where xx is the slot number where the board is residing, e.g. "S09: x ... x".

8.5 Firmware Upgrade

The standard way to upgrade the IPMI's operational code is to use the open tool "ipmitool" (see Table 2, Related Publications). This tool allows download and activation of new operational code and also rollback to the "last known good" operational code. Additionally, the status and the firmware version of the redundant firmware copies can be checked.

For local or remote firmware upgrade, the following IPMI interfaces are available:

- KCS interface (locally, requires active payload, but fast)
- IPMB (remote, independent of the payload state)
- LAN (remote, via IOL, requires also active payload)

During the download process, the currently running operational code operates as usual until the activation command is issued. During the activation process, the IPMI controller is off-line for about 20 seconds while the boot code is re-organizing the firmware storage. Afterwards, it starts the new operational code. If this doesn't succeed, after a timeout the boot code performs an automatic rollback to the "last known good" operational code.

8.5.1 Firmware File Formats

Firmware images for upgrade are provided in two formats:

- Firmware in binary format, e.g. FW_IPMI_<BOARD>_<REL>_FWUM.bin, for usage with "ipmitool fwum .." commands
- Firmware images in the PICMG defined HPM.1 file format, e.g. FW_IPMI_<BOARD>_<REL>_FWUM.hpm, for usage with "ipmitool hpm .." commands.

where:

<BOARD> identifies to board family of the IPMI firmware (B3C0)

<REL> identifies to release (version) of IPMI firmware.

8.5.2 Firmware Upgrade - "ipmitool hpm"

Firmware upgrade using a HPM.1 file requires at least "ipmitool" version 1.8.10.

The firmware upgrade procedure starts with downloading the HPM.1 file using, for example, the following command:

```
ipmitool hpm upgrade <HPM.1_FWFile>.hpm all
```

The next step is the activation of the newly downloaded IPMI firmware. This is done using:

```
ipmitool hpm activate
```

Detailed information about the currently active firmware versions or the redundant copies can be obtained using the commands mentioned below.

To obtain detailed version information of the active IPMI firmware, use the following command:

```
ipmitool hpm compprop 1 1
```

To obtain the version of the rollback copy (only valid if a newly downloaded firmware is already activated), use the following command:

```
ipmitool hpm compprop 1 3
```

To obtain the version of the newly downloaded IPMI firmware (only valid after download and before activation), use the following command:

```
ipmitool hpm compprop 1 4
```

To obtain detailed information about the IPMI HPM.1 upgrade capabilities, use the following command:

```
ipmitool hpm targetcap
```


8.5.3 Firmware Upgrade - "ipmitool fwum"

"ipmitool" version 1.8.9 doesn't support HPM.1 correctly. Tool versions prior to this do not support HPM.1 at all.

The firmware upgrade procedure starts with downloading the binary firmware file using, for example, the following command:

```
ipmitool fwum download <Binary_FWFile>.bin
```

The next step is the activation of the newly downloaded IPMI firmware. This is done using

```
ipmitool fwum upgrade
```

Detailed information about the currently active firmware versions and the redundant copies can be obtained using the following command:

```
ipmitool fwum status
```

Some information about the IPMI's upgrade capabilities can be determined using the command:

ipmitool fwum info

8.6 Setting the SEL Time

The IPMI controller does not have its own hardware real time clock. Therefore, after start-up, restart or upgrade of the IPMI controller, its software clock first must be supplied with the current time. The IPMI controller uses the time when handling event messages which otherwise will have an out-of-date time stamp.

Every time when the uEFI BIOS starts up, it supplies the IPMI controller with the payload's current real time clock time.

Restarts of the IPMI controller without a following uEFI BIOS reboot will result in invalid date and time indication. In order to apply correct timestamps to the SEL records, issue the IPMI command **Set SEL Time**. This may be done by application software on the payload side via the KCS interface or by a remote IPMI controller via the IPMB-0.

8.7 IPMI Firmware Write Protection

If the CP6003-SA/RA/RC is plugged in a write-protected CompactPCI slot, the system write protection bit SWP in the Device Protection Register (0x284) is set to "1". In this case, the IPMI firmware cannot be updated or reprogrammed neither through KCS, nor through IPMB nor through LAN. The IPMI firmware stores the write protect state in it's local NV-RAM. The write protect state changes if the payload is on and the system write protection bit SWP is set to "0". This bit can be read only when the payload is on.

Note ...

The write protection mode is still active when the payload is off even if the IPMI firmware reboots. To disable the write protection mode, plug the board in a non-write-protected CompactPCI slot and switch the payload on.

9. FRU Data

9.1 Structure and Functionality

The IPMI controller provides 4 kB non-volatile storage space for FRU information. For further information regarding the FRU data, refer to IPMI - Platform Management FRU Information Storage Definition v1.0, Document Revision 1.1.

Full low-level access to read or write the board's FRU Information is provided by regular IPMI FRU Device commands. Care must be taken when writing FRU information directly using standard IPMI commands because there is no write protection. Invalid FRU information may disturb a shelf management software which uses the FRU data.

9.2 FRU Version Identification

The FRU data fields, as defined in the IPMI specification, are used to record the version of the FRU installed. The revision number is incremented for each new release of FRU data.

Example of board FRU ID: "STD_R10" Example of product FRU ID: "STD_R10"

9.3 Board-Specific FRU Data

The following FRU data areas and data fields are supported:

FRU Board Info Area

Manufacturing date / time

Board manufacturer (C7): "Kontron"

Board Product Name (C6): "CP6003-SA/RA/RC"

Board Serial Number (CF): "123456789012345" ¹⁾

Board Part Number (C9): "123456789" ¹⁾

FRU File ID (C7): "STD_R10"

FRU Product Info Area

Product manufacturer (C7): "Kontron"

Product Name (C6): "CP6003-SA/RA/RC"

Product Part Number (C2): "00" 1)

• Asset Tag (D9): "______" 2

• FRU File ID (C7): "STD_R10"

CustomData (D5): "MAC=CC:CC:CC:CC:CC:¹⁾

¹⁾ Field will be modified during the manufacturing process

²⁾ Field is free for user. Please note that changes need special care (checksums).

9.4 FRU Data Update

Typically, an update of the FRU data is not necessary because the board's correct FRU data is installed at the factory. If an update of the FRU data is required, it can be done via regular IPMI FRU device commands. The correct FRU data must be prepared at the factory. Please contact Kontron for further assistance.

9.5 FRU Data Write Protection

If the write protection mode of the IPMI firmware is active, the FRU data cannot be updated, reprogrammed or modified. For further information on the IPMI firmware write protection, please refer to Chapter 8.7.

10. XMC Card Support

The presence or absence of an XMC card is reported by the "XMC present" sensor (refer to sensor description).

If an XMC card is present, the card's FRU data EEPROM is readable/writable. The size of the EEPROM must be smaller or equal to 256 bytes because of 8-bit EEPROM addressing. Note that XMC FRU size is always reported as 256 bytes and writing to locations that are higher than the real capacity should be avoided.

The FRU data of the XMC can be read under Linux using ipmitool fru print 1.

Page 36 ID 1045-5656, Rev. 2.0

11. uEFI BIOS Failover Control - Automatic SPI Boot Flash Selection

When the CP6003-SA/RA/RC's payload starts, the first code to be executed is the uEFI BIOS. There are two SPI boot flash devices (standard and recovery), which may contain different uEFI BIOS codes. Which one of them will be utilized from the next boot process on is defined by one of two ways:

- The IPMI controller determines whether to boot from the standard or the recovery SPI boot flash. The IPMI firmware's parameter used for this function is configured via the OEM IPMI command set Control State. The IPMI controller stores this parameter in the EEPROM (refer to Chapter 6.3, Set Control State).
- Setting the DIP Switch SW1, switch 2, to ON results in booting from the recovery SPI boot flash regardless of the IPMI firmware setting.

11.1 Automatic SPI Boot Flash Selection During the Boot Process

After each payload reset the IPMI controller selects the SPI boot flash by applying the related EEPROM parameter.

Physically the IPMI controller sets or resets a signal line. Afterwards, it waits for a special message from the uEFI BIOS. This message contains the checksum report, i.e. it indicates the validity of the SPI boot flash's checksum.

If the Set Control State OEM command byte 2 is set to 00h and the DIP switch SW1, switch 2, is OFF, the uEFI BIOS boots from the standard SPI boot flash. If the checksum is wrong or the message is not received within 60 seconds, then the standard SPI boot flash is assumed to contain an invalid or a corrupted image. In this case, the IPMI controller selects the recovery SPI boot flash and reset the board again.

If the Set Control State OEM command byte 2 is set to 01h or the DIP switch SW1, switch 2, is ON, the uEFI BIOS boots from the recovery SPI boot flash. With this setting, the IPMI controller does not switch over to the standard SPI boot flash if the checksum is wrong or the message is not received. In this case, the board freezes. For this reason, it is recommended to use the standard SPI boot flash as a default boot flash.

In case of a boot failure, the IPMI controller issues a "Boot Error (Invalid boot sector) event" by setting the appropriate sensor value (sensor "FWHx Boot Err". x = 0..1). "x" is the number of the used SPI boot flash (0 = standard SPI boot flash; 1 = recovery SPI boot flash). Afterwards, it causes a payload-off/on cycle and continues as described at the beginning of this chapter.

11.2 OS Boot Order Selection by OEM IPMI

Normally the uEFI BIOS will apply the OS boot order which was selected in the uEFI BIOS menu "uEFI Boot/Boot Option Priorities". But there is another alternative boot order which is stored in the IPMI controller's non-volatile memory. This boot order can be set and read by IPMI OEM commands. At payload start the IPMI controller writes this boot order into a register where the uEFI BIOS can read it. If this IPMI controller's boot order has a non-zero value, the uEFI BIOS will use it instead of its own boot order.

12. Hot Swap and Shutdown

12.1 Hot Swap Handle and Hot Swap (Blue) LED

To perform the actions required for hot swapping of the CP6003-SA/RA/RC, a hot swap state machine with the following M-states generated by the IPMI controller is used:

- M0: Board Not Installed
- M1: Board Inactive
- M2: Board Activation Request
- M3: Board Activation in Progress
- M4: Board Active
- M5: Board Deactivation Request
- M6: Board Deactivation in Progress

The blue Hot Swap LED (HS LED) of an inserted board in a powered rack is normally used to indicate the board's operational status so as to facilitate hot-swapping of the board:

Hot Swap LED On

The payload is inactive:

- · The board may be activated by closing the Hot Swap handle, or
- The board may be extracted. The M-state is 1.

When payload power is off e.g. after a shutdown via an IPMI chassis command and the handle is still closed, the M-state is 1.

Hot Swap LED Blinking

Changing from active state to inactive state or vice versa.

Don't extract the board now. The M-state is 2, 5 or 6.

Hot Swap LED Off

The payload is active.

Don't extract the board now. Normally the extraction is impossible because the handle is closed and locked. The M-state is 3 or 4.

Normally the logical states "active" and "inactive" of a payload are identical to the physical states "handle open" and "handle closed" or "payload power off" and "payload power on".

If, however, the power is switched on or off using IPMI chassis commands or the payload is shut down by the OS, then the position of the Hot Swap handle and the power state may become asynchronous. In this case the blue LED is switched on indicating that the payload power is switched off although the handle is closed. Such actions are not part of the Hot Swap process and are governed by their own functionality which is not within the scope of this document.

12.2 The Hot Swap and Shutdown Processes

Hot Swap, as defined here, is the purposely initiated process to remove and replace an active board in a powered system. To accomplish this requires that the hot swap process provide for an orderly transition of the payload from the active to inactive state and vice versa. This is necessary to preclude improper system operation and possible loss of data. The CP6003-SA/RA/RC has all the necessary features including hardware and IPMI software to support hot swapping. On the software side, however, not all available OS's support hot swapping, not even partially. Three possible cases for hot swapping based on OS capabilities are described as follows.

Case 1: Involves an OS which does not support ACPI

After payload power on, the starting uEFI BIOS will inform the IPMI controller by sending the IPMI command Set ACPI Power State / Set Legacy on. This means that a Hot Swap (opening of the closed handle) shall immediately lead to payload power-off by the IPMI controller.

In this event, the application/operator is responsible for the termination of all payload processes prior to initiating removal/replacement of the board to avoid improper operation or loss of data.

Case 2: Involves an OS which emulates ACPI support

An OS which does not really support ACPI, such as VxWorks, is able to obtain "Graceful Shutdown" support from the IPMI controller by performing in the following way.

After start-up, such an OS must manipulate the chipset in a way that prevents an immediate power-off when the "power button" is logically activated.

Then it must send the IPMI command Set ACPI Power State / S0/G0 working to the IPMI controller to enable this to process later on an S3/G2 soft off command.

During application operation the system must cyclically read the "Hot Swap Sensor" (sensor #0) using the IPMI command Get Sensor Reading. This allows the tracking of the board's state. After the board has once reached M-state 4 (sensor reading is 10h) the leaving of this announces that the handle was opened. Now the time has come to terminate all processes.

After all critical processes have been terminated, the OS must send the IPMI command Set ACPI Power State / S3/G2 soft off to the IPMI controller which will set the power off immediately.

Case 3: Involves an OS which supports ACPI

When an OS is started which supports ACPI, the IPMI command Set ACPI Power State / S0/G0 working is sent to the IPMI controller. This indicates that the OS has reprogrammed the chipset in such a manner that a "power button" signal does not lead to an immediate power-off but only causes an event that can be detected by the OS.

When the handle is opened, the IPMI controller asserts the "power button" signal to notify the OS. The OS then shuts down all processes and afterwards causes the transmission of the IPMI command Set ACPI Power State / S3/G2 soft off to the IPMI controller which then switches the power off.

13. LAN Functions

13.1 Overview

All Ethernet channels except for the GbE E channel support IPMI over LAN (IOL) and Serial over LAN (SOL). Common for both types of communication is the use of the RMCP/RMCP+ protocol for the packing of the data to be transferred. The RMCP/RMCP+ protocol uses the TCP port 623 by default.

While IOL serves to transport IPMI commands and their responses, SOL serves to transport any serial data. In each case, the IPMI controller serves as a protocol encoder and decoder. IOL is able to use both RMCP and RMCP+ protocols. SOL works only with the RMCP+ protocol.

Please note that IOL and SOL need the Ethernet device to be powered. Therefore, the module (payload) must be fully powered.

13.2 Setting Up the Ethernet Channel

There are two methods to configure the LAN settings (IOL/SOL) for the four Ethernet channels:

- By use of the kipmi net uEFI Shell command in the uEFI BIOS
- By use of the open tool "ipmitool" or IPMI commands

The setup methods are compatible, i.e. both methods show the parameters which are set by the other one.

The setup is separate for all four channels. When the MAC addresses are set, the ones which are programmed into the hardware must be re-used. This is a restriction. The IP addresses of a channel being used by "normal" payload traffic and IOL/SOL traffic may differ but need not differ as long as port 623 is not used in parallel by payload and IOL/SOL.

The four Ethernet ports provided by the CP6003-SA are assigned to the following channels:

Channel 2: Rear port GbE D

Channel 3: Rear port GbE C

Channel 4: Front port GbE B

Channel 5: Front port GbE A

The four Ethernet ports provided by the CP6003-RA are assigned to the following channels:

Channel 2: Rear port GbE D

Channel 3: Rear port GbE C

Channel 4: Front/Rear port GbE A

Channel 5: Front/Rear port GbE B

The four Ethernet ports provided by the CP6003-RC are assigned to the following channels:

Channel 2: Rear port GbE D

Channel 3: Rear port GbE C

Channel 4: Rear port GbE B

Channel 5: Rear port GbE A

13.3 Basic Setup from uEFI Shell

With the **kipmi net** command from uEFI Shell some basic settings such as IP address, sub-net mask and gateway address can be set up for all of the four Ethernet channels.

13.4 Setup by "ipmitool" or IPMI Commands

The open tool "ipmitool" offers commands for the setup of the four Ethernet channels. All possible options are shown by issuing:

```
ipmitool lan set
```

If "ipmitool" is not usable, the LAN parameters can be set by using standard IPMI commands as defined in the IPMI specification.

To show the current LAN parameters for a channel, "ipmitool" offers the command:

```
ipmitool lan print <channel = 2, 3, 4, 5>
```

13.5 Setup of User Accounts and Password

The open tool "ipmitool" offers commands for the listing and manipulation of user accounts for channels 1 through 4. An overview can be obtained by issuing:

```
ipmitool user
```

The predefined user accounts for a channel can be listed using the following command:

```
ipmitool user list <channel = 2, 3, 4, 5>
```

For every channel, the CP6003-SA/RA/RC has these predefinitions in non-volatile memory:

ID	Name	Callin	Link Auth	IPMI Msg	Channel Priv Limit	
1		false	true	true	USER	
2	admin	false	true	true	ADMINISTRATOR	

Please note that the **ADMINISTRATOR** password is preset with **admin**.

Changed accounts and passwords stay valid after payload power-off.

The accounts must be activated using the following command:

```
ipmitool user enable <user number>
```


13.6 IPMI Over LAN (IOL)

IPMI over LAN is used to allow the IPMI controller to communicate with the IPMI controller via LAN using the RMCP or the RMCP+ protocol. The data transferred are IPMI commands and the responses to them.

To enable LAN support after parameter setup the following command must be issued:

```
ipmitool lan set <channel = 2, 3, 4, 5> access on
```

Please note that the following commands must use the IP address which belongs to the enabled channel.

The open tool "ipmitool" can serve as a control program and user interface for this. "ipmitool" allows the issuing of generic IPMI commands such as:

```
ipmitool -I lan -H 192.168.3.189 -U admin -P admin -A PASSWORD raw 6 1
```

or to call complex functions like "mc.info":

```
ipmitool -I lan -H 192.168.3.189 -U admin -P admin -A PASSWORD mc info
```

This uses many generic IPMI commands to get the information needed.

13.7 Serial Over LAN (SOL)

Serial over LAN connects the COM1 or /dev/ttyS0 respectively of the CP6003-SA/RA/RC's payload side to an Ethernet channel. The IPMI controller resides between this serial interface and one of the Ethernet channels. It serves as an encoder and a decoder for the used RMCP+ protocol and controls the data stream. Outside the CP6003-SA/RA/RC, for example, the open tool "ipmitool" can be used to drive the SOL session, i.e. it offers a console function to communicate via Ethernet with the CP6003-SA/RA/RC's serial interface.

The IPMI firmware supports only "straight password authentication" SOL sessions with default privilege level USER.

Opening an SOL session requires special parameters as shown below:

```
ipmitool -I lanplus -H 192.168.3.189 -U admin -P admin -L USER -C 0 sol activate
```

The serial interface can be used as a connection, for example:

- To a user program on the CP6003-SA/RA/RC payload
- To the uEFI BIOS. Refer to the Main Setup menu, Serial Port Console Redirection function in the CP6003-SA/RA/RC uEFI BIOS User Guide. The serial parameters can be set via this function.
- To a Linux login console. This can be activated after payload start, for example, by the command:

```
getty -h 115200 /dev/ttyS0
```

SOL supports and requires serial hardware handshake. This should be activated for the serial port. Otherwise transmitted data might get lost. In any case the same serial parameters for the payload side serial interface and the IPMI controller's serial interface must be used.

The parameters for the IPMI controller's serial interface can be set by using the following command:

ipmitool sol set

This command shows all options that can be set.

Further options are listed after issuing the following command:

ipmitool sol help

14. OS Support / Tools

14.1 Linux Tools

OpenIPMI - KCS driver

Normally all drivers and kernel modules needed for communication between the payload sided software and the IPMI firmware via the KCS interface come with the distribution. Newest sources can be downloaded from: "http://openipmi.sourceforge.net". There may be downloaded the OpenIPMI project as well. The OpenIPMI library package includes some applications and the needed libraries.

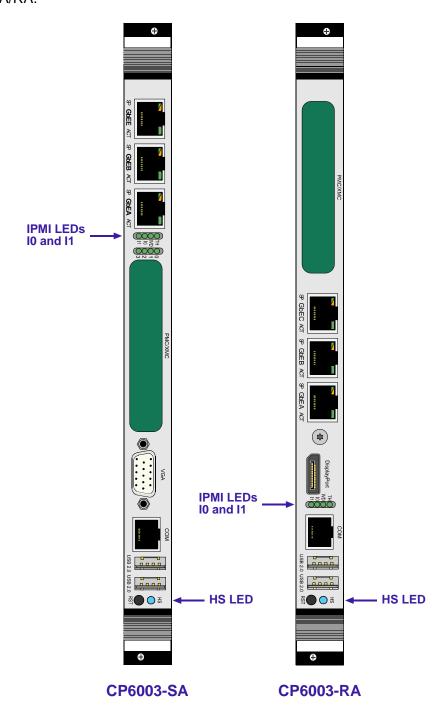
ipmitool

Another very useful all-in-one tool is "ipmitool" (http://ipmitool.sourceforge.net). It provides a user-friendly interface to many IPMI features and extensions, for example, to get sensor readings, change sensor thresholds or to access other IPMI controllers via IPMB. Before "ipmitool" can be used the OpenIPMI driver, mentioned above, must be loaded too.

14.2 OS Support - Board Support Packages

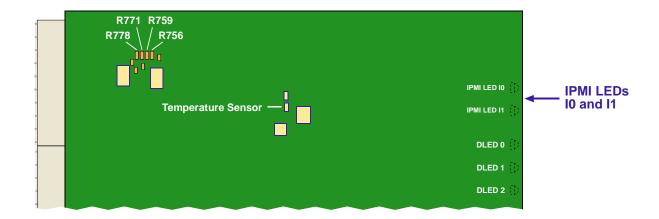
For information on the operating systems supported with the CP6003-SA/RA/RC, please refer to the CP6003-SA/RA/RC's data sheet. Please visit "http://www.kontron.com" to download the data sheet. Please also have a look at the download section for the latest versions of Board Support Packages or Firmware Updates.

For further information concerning IPMI, refer to the BSP documentation for the respective OS.



15. IPMI and Hot Swap LEDs

On the CP6003-SA/RA, there are three LEDs controlled by the IPMI controller, two IPMI Status LEDs and a Hot Swap LED. All three LEDs are located on the front panel of the CP6003-SA/RA.


On the CP6003-RC, there are two IPMI LEDs controlled by the IPMI controller. Both LEDs are located on the rear side of the CP6003-RC.

The following figure illustrates the location of the two IPMI LEDs and the HS LED on the CP6003-SA/RA.

Page 44 ID 1045-5656, Rev. 2.0

The following figure illustrates the location of the two IPMI LEDs on the CP6003-RC.

The following table describes the functions of the IPMI LEDs and the Hot Swap LED.

Table 14: IPMI and Hot Swap LEDs Function

LED	COLOR	NORMAL MODE	OVERRIDE MODE	
I0 (right)	red	Off = board powered / running	Selectable by user	
		On = board out of service (frmware not running)	 Only lamp test 	
	green	Pulsing = traffic on the IPMB bus		
I1 (left)	red	On = health error detected	Selectable by user	
	green	Off = no health error detected	 Only lamp test 	
		Pulsing = KCS interface active		
		Blinking = IPMI controller running showing its heart beat		
	red/amber	Slow blinking = health error detected, IPMI controller running showing its heart beat		
		Pulsing = health error detected, KCS interface active		
HS LED	blue	On = a) board ready for hot swap extraction, or	Selectable by user	
		b) board has just been inserted in a powered system	 Only lamp test 	
		Off = board in normal operation (do not extract the board)		
		Blinking = board hot swap in progress; board not ready for extraction		

This page has been intentionally left blank.

Page 46 ID 1045-5656, Rev. 2.0