
If it’s embedded, it’s Kontron.

» User Guide «

U-Boot

Bootloader

User Guide for the

AM4120

Doc. ID: 1046-1856, Rev. 1.0
3 November 2011

Preface U-Boot Bootloader

Page 2 ID: 1046-1856, Rev. 1.0

Revision History

Imprint

Kontron Modular Computers GmbH may be contacted via the following:

MAILING ADDRESS TELEPHONE AND E-MAIL

Kontron Modular Computers GmbH +49 (0) 800-SALESKONTRON

Sudetenstraße 7 sales@kontron.com

D - 87600 Kaufbeuren Germany

For further information about other Kontron products, please visit our Internet web site:
www.kontron.com.

Disclaimer

Copyright © 2011 Kontron AG. All rights reserved. All data is for information purposes only and
not guaranteed for legal purposes. Information has been carefully checked and is believed to
be accurate; however, no responsibility is assumed for inaccuracies. Kontron and the Kontron
logo and all other trademarks or registered trademarks are the property of their respective own-
ers and are recognized. Specifications are subject to change without notice.

Publication Title: U-Boot Bootloader User Guide for the AM4120

Doc. ID: 1046-1856

Rev. Brief Description of Changes Date of Issue

1.0 Initial issue 3-Nov-2011

U-Boot Bootloader Preface

ID: 1046-1856, Rev. 1.0 Page 3

Table of Contents

Revision History ... 2

Imprint .. 2

Disclaimer .. 2

Table of Contents ... 3

Copyrights and Licensing ... 5

Obtaining Source Code .. 10

1. Introduction to U-Boot ... 11

2. Standard U-Boot Commands .. 11

3. Kontron Specific Commands .. 14
3.1 Command List .. 14

3.2 Command Syntax Reference ... 14

4. U-Boot Access and Startup ... 27

5. Environment ... 27

6. Working with U-Boot .. 27
6.1 General Operation .. 27

6.2 Using the Network .. 27

6.3 Using SD Cards ... 28

6.4 Using the Onboard NAND Flash .. 29

6.5 Using the Onboard Parallel NOR Flash ... 29

6.6 Booting an OS .. 30

6.6.1 Booting Linux ... 30

6.6.2 Booting VxWorks ... 30

6.7 Getting Help ... 31

6.8 Update .. 32

6.9 Recovery Mechanism ... 32

Preface U-Boot Bootloader

Page 4 ID: 1046-1856, Rev. 1.0

This page has been intentionally left blank.

U-Boot Bootloader Preface

ID: 1046-1856, Rev. 1.0 Page 5

Copyrights and Licensing

U-Boot is Free Software. It is copyrighted by Wolfgang Denk and many others who contributed
code (see the actual source code for details). You can redistribute U-Boot and/or modify it un-
der the terms of version 2 of the GNU General Public License as published by the Free Soft-
ware Foundation. Most of it can also be distributed, at your option, under any later version of
the GNU General Public

License -- see individual files for exceptions.

NOTE! This license does *not* cover the so-called "standalone" applications that use U-Boot
services by means of the jump table provided by U-Boot exactly for this purpose - this is merely
considered normal use of U-Boot, and does *not* fall under the heading of "derived work".

The header files "include/image.h" and "include/asm-*/u-boot.h" define interfaces to U-Boot. In-
cluding these (unmodified) header files in another file is considered normal use of U-Boot, and
does *not* fall under the heading of "derived work".

Also note that the GPL below is copyrighted by the Free Software Foundation, but the instance
of code that it refers to (the U-Boot source code) is copyrighted by me and others who actually
wrote it.

-- Wolfgang Denk

==

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public License is intended to guarantee your freedom to share
and change free software -- to make sure the software is free for all its users. This General Pub-
lic License applies to most of the Free Software Foundation's software and to any other pro-
gram whose authors commit to using it. (Some other Free Software Foundation software is
covered by the GNU Library General Public License instead.) You can apply it to your pro-
grams, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free soft-
ware (and charge for this service if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new free programs; and that you
know you can do these things.

Preface U-Boot Bootloader

Page 6 ID: 1046-1856, Rev. 1.0

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights
or to ask you to surrender the rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must
give the recipients all the rights that you have. You must make sure that they, too, receive or
can get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license
which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands
that there is no warranty for this free software. If the software is modified by someone else and
passed on, we want its recipients to know that what they have is not the original, so that any
problems introduced by others will not reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the
danger that redistributors of a free program will individually obtain patent licenses, in effect
making the program proprietary. To prevent this, we have made it clear that any patent must
be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

GNU GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the
copyright holder saying it may be distributed under the terms of this General Public
License. The "Program", below, refers to any such program or work, and a "work based on
the Program" means either the Program or any derivative work under copyright law: that is
to say, a work containing the Program or a portion of it, either verbatim or with modifications
and/or translated into another language. (Hereinafter, translation is included without
limitation in the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License;
they are outside its scope. The act of running the Program is not restricted, and the output
from the Program is covered only if its contents constitute a work based on the Program
(independent of having been made by running the Program). Whether that is true depends
on what the Program does.

1. You may copy and distribute verbatim copies of the Program's source code as you receive
it, in any medium, provided that you conspicuously and appropriately publish on each copy
an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that
refer to this License and to the absence of any warranty; and give any other recipients of
the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.

U-Boot Bootloader Preface

ID: 1046-1856, Rev. 1.0 Page 7

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work
based on the Program, and copy and distribute such modifications or work under the terms
of Section 1 above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed
the files and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a whole
at no charge to all third parties under the terms of this License.

c) If the modified program normally reads commands interactively when run, you must
cause it, when started running for such interactive use in the most ordinary way, to
print or display an announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide a warranty) and that
users may redistribute the program under these conditions, and telling the user how
to view a copy of this License. (Exception: if the Program itself is interactive but does
not normally print such an announcement, your work based on the Program is not
required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Program, and can be reasonably considered independent
and separate works in themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you distribute the same
sections as part of a whole which is a work based on the Program, the distribution of the
whole must be on the terms of this License, whose permissions for other licensees extend
to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written
entirely by you; rather, the intent is to exercise the right to control the distribution of
derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program
(or with a work based on the Program) on a volume of a storage or distribution medium
does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object
code or executable form under the terms of Sections 1 and 2 above provided that you also
do one of the following:

a) Accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party,
for a charge no more than your cost of physically performing source distribution, a
complete machine-readable copy of the corresponding source code, to be distributed
under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

c) Accompany it with the information you received as to the offer to distribute
corresponding source code. (This alternative is allowed only for noncommercial
distribution and only if you received the program in object code or executable form
with such an offer, in accord with Subsection b above.)

Preface U-Boot Bootloader

Page 8 ID: 1046-1856, Rev. 1.0

The source code for a work means the preferred form of the work for making modifications
to it. For an executable work, complete source code means all the source code for all
modules it contains, plus any associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a special exception, the
source code distributed need not include anything that is normally distributed (in either
source or binary form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component itself accompanies
the executable.

If distribution of executable or object code is made by offering access to copy from a
designated place, then offering equivalent access to copy the source code from the same
place counts as distribution of the source code, even though third parties are not compelled
to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this License
will not have their licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing
else grants you permission to modify or distribute the Program or its derivative works.
These actions are prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the Program), you indicate
your acceptance of this License to do so, and all its terms and conditions for copying,
distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the
Program subject to these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein. You are not responsible
for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they do
not excuse you from the conditions of this License. If you cannot distribute so as to satisfy
simultaneously your obligations under this License and any other pertinent obligations,
then as a consequence you may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by all those who receive
copies directly or indirectly through you, then the only way you could satisfy both it and this
License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a whole is
intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system, which is implemented by
public license practices. Many people have made generous contributions to the wide range
of software distributed through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing to distribute software
through any other system and a licensee cannot impose that choice.

U-Boot Bootloader Preface

ID: 1046-1856, Rev. 1.0 Page 9

This section is intended to make thoroughly clear what is believed to be a consequence of
the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Program
under this License may add an explicit geographical distribution limitation excluding those
countries, so that distribution is permitted only in or among countries not thus excluded. In
such case, this License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version
number of this License which applies to it and "any later version", you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Program does not specify a version number of this
License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free Software Foundation; we
sometimes make exceptions for this. Our decision will be guided by the two goals of
preserving the free status of all derivatives of our free software and of promoting the
sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE
DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL
OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR
A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN
IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Preface U-Boot Bootloader

Page 10 ID: 1046-1856, Rev. 1.0

Obtaining Source Code

The software included in this product contains copyrighted software that is licensed under the
GPL. A copy of that license is included in this document beginning on page 5. You may obtain
the complete Corresponding Source code from Kontron for a period of three years after our last
shipment of this product. Please contact Kontron Support for further assistance in obtaining the
source code.

U-Boot Bootloader U-Boot Usage

ID: 1046-1856, Rev. 1.0 Page 11

1. Introduction to U-Boot
U-Boot is an open source boot loader software developed and maintained by DENX Software
Engineering GmbH (http://www.denx.de). Kontron provides U-Boot with all its standard fea-
tures as well as Kontron specific features for usage with Kontron’s Freescale™ QorIQ P-series
based AMC CPU modules.

This user guide provides specific information on Kontron’s implementation of U-Boot and its
usage. Please refer to the DENX website for up-to-date on-line documentation of all of
U-Boot’s standard features.

2. Standard U-Boot Commands
U-Boot is provided with a library of standard commands for which documentation is provided
on the DENX website. Some of the below listed standard commands have sub-groups which
can be displayed when help for the main group command is requested.

Where relevant, further information concerning the usage of standard commands is provided
in this guide to assist users in performing specific functions.

Table 1: Standard U- Boot Commands

COMMAND DESCRIPTION

? Alias for 'help'

base Print or set address offset

bdinfo Print Board Info structure

boot Boot default, i.e., run 'bootcmd'

bootd Boot default, i.e., run 'bootcmd'

bootelf Boot from an ELF image in memory

bootm Boot application image from memory

bootp Boot image via network using BOOTP/TFTP protocol

bootvx Boot vxWorks from an ELF image

chpart Change active partition

cmp Memory compare

coninfo Print console devices and information

cp Memory copy

cpu Multiprocessor CPU boot manipulation and release

crc32 Checksum calculation

dhcp Boot image via network using DHCP/TFTP protocol

echo Echo args to console

U-Boot Usage U-Boot Bootloader

Page 12 ID: 1046-1856, Rev. 1.0

editenv Edit environment variable

env Environment handling commands

erase Erase FLASH memory

exit Exit script

ext2load Load binary file from a Ext2 filesystem

ext2ls List files in a directory (default /)

false Do nothing, unsuccessfully

fatinfo Print information about filesystem

fatload Load binary file from a dos filesystem

fatls List files in a directory (default /)

fdt Flattened device tree utility commands

flinfo Print FLASH memory information

fsinfo Print information about filesystems

fsload Load binary file from a filesystem image

go Start application at address 'addr'

help Print command description/usage

i2c I2C subsystem

iminfo Print header information for application image

imls List all images found in flash

imxtract Extract a part of a multi-image

interrupts Enable or disable interrupts

irqinfo Print information about IRQs

itest Return true/false on integer compare

loadb Load binary file over serial line (kermit mode)

loads Load S-Record file over serial line

loady Load binary file over serial line (ymodem mode)

loop Infinite loop on address range

ls List files in a directory (default /)

md Memory display

Table 1: Standard U- Boot Commands

COMMAND DESCRIPTION

U-Boot Bootloader U-Boot Usage

ID: 1046-1856, Rev. 1.0 Page 13

md5sum Create/check md5sum message digest

mii MII utility commands

mm Memory modify (auto-incrementing address)

mmc MMC sub system

mmcinfo Display MMC info

mtdparts Define flash/nand partitions

mtest Simple RAM read/write test

mw Memory write (fill)

nand NAND subsystem

nboot Boot from NAND device

nm Memory modify (constant address)

pci List and access PCI Configuration Space

ping Send ICMP ECHO_REQUEST to network host

printenv Print environment variables

protect Enable or disable FLASH write protection

reginfo Print register information

reset Perform RESET of the CPU

run Run commands in an environment variable

saveenv Save environment variables to persistent storage

saves Save S-Record file over serial line

setenv Set environment variables

setexpr Set environment variable as the result of eval expression

sf SPI flash subsystem

showvar Print local hushshell variables

sleep Delay execution for some time

source Run script from memory

test Minimal test like /bin/sh

tftpboot Boot image via network using TFTP protocol

true Do nothing, successfully

Table 1: Standard U- Boot Commands

COMMAND DESCRIPTION

U-Boot Usage U-Boot Bootloader

Page 14 ID: 1046-1856, Rev. 1.0

3. Kontron Specific Commands

3.1 Command List

Kontron’s implementation of U-Boot includes certain enhancements to provide specific func-
tions not incorporated in the U-Boot standard library. The following additional functions have
been implemented in U-Boot:

• flsw (FLash SWitch)

• fru (Field Replaceable Unit)

• fwum (FirmWare Update Manager

• kboardinfo (Kontron BOARDINFO)

• kcs (Keyboard Controller Style)

• tlbdbg (Translation Look-aside Buffer DeBuG)

• vpd (Vital Product Data)

3.2 Command Syntax Reference

The following provides command syntax reference information, a short description, and, in
some cases, usage examples.

Where an ellipsis (…) appears in the command syntax it means that the command is continued
on the next line. Observe spaces before the ellipsis.

ubi ubi commands

ubifsload Load file from an UBIFS filesystem

ubifsls List files in a directory

ubifsmount Mount UBIFS volume

ubifsumount Unmount UBIFS volume

version Print monitor, compiler and linker version

Table 1: Standard U- Boot Commands

COMMAND DESCRIPTION

U-Boot Bootloader U-Boot Usage

ID: 1046-1856, Rev. 1.0 Page 15

flsw (FLash SWitch)

FUNCTION: Indicate or select currently active SPI NOR flash

SYNTAX: flsw [s|r]

where:

flsw command:

issuing the command without arguments will indicate
the currently active SPI NOR flash

(also returns ‘true’ or ‘false’ depending on currently
active flash)

s option: standard

selects the standard SPI NOR flash as the active flash

r option: recovery

selects the recovery SPI NOR flash as the active flash

DESCRIPTION: This command is used to determined the currently active SPI NOR flash
or to select either the standard SPI NOR flash or the recovery SPI NOR
flash as the currently active flash.

In addition, this command returns ‘true’ if the standard SPI NOR flash is
selected or ‘false’ if the recovery SPI NOR flash is selected. This is used
in the update scripts to prevent the recovery flash from being updated.

Besides this command, the currently active SPI NOR flash may also be
selected either via a DIP Switch setting or IPMI OEM command.

The output of this command always shows the current state.

USAGE: Query flash status:

COMMAND / RESPONSE:

=> flsw
standard boot flash active
=>

Select standard SPI NOR flash as currently active flash:

COMMAND / RESPONSE:

=> flsw s
=>

U-Boot Usage U-Boot Bootloader

Page 16 ID: 1046-1856, Rev. 1.0

fru (Field Replaceable Unit)

FUNCTION: Provides read/write access to the board’s FRU repository as well as
displaying FRU data

SYNTAX: fru info <FRU nr>|…

 read <FRU nr> <address> <size>|…

 write <FRU nr> <address> <size>

where:

fru command:

info option:

displays FRU data for <FRU nr> specified

<FRU nr> parameter: hexadecimal

<0, 1, … n>

identification number of FRU device for option
specified

read option:

reads FRU data for <FRU nr> specified

<address> parameter: hexadecimal

<[x …]x>

address where data is to be stored or read from

<size> parameter: hexadecimal

<[x …]x>

length of data in bytes to be read or written

write option:

writes FRU data to <FRU nr> specified

DESCRIPTION: This command can be used to display basic information about the FRU
repository, read out the repository content to RAM, and, if required, to
update the contents of the FRU repository.

WARNING!

Writing incorrect FRU data to the FRU repository can result in an
inoperable board (E-Keying information incorrect). Users requiring
modification to the board’s FRU data are requested to contact Kontron
for assistance before making any changes.

USAGE: Query FRU data for FRU 0:

COMMAND / RESPONSE:

=> fru info 0
FRU 0 size is 0x1000 bytes

U-Boot Bootloader U-Boot Usage

ID: 1046-1856, Rev. 1.0 Page 17

USAGE: Read FRU data for FRU 0:

COMMAND / RESPONSE:

=> fru read 0x0 0x1000000 0x1000
Progress:###################################
 ###################################
 ###################################
 ###################################
 ###############################
=>

Write FRU data to FRU 0:

COMMAND / RESPONSE:

=> fru write 0x0 0x1000000 0x1000
Progress:###################################
 ###################################
 ###################################
 ###################################
 ###############################
=>

fru (Field Replaceable Unit)

U-Boot Usage U-Boot Bootloader

Page 18 ID: 1046-1856, Rev. 1.0

fwum (FirmWare Update Manager)

FUNCTION: Provides functions for managing and updating the module’s MMC
firmware

SYNTAX: fwum info|…

 status|…

 upgrade <address> <size>|…

 rollback

where:

fru command:

info option:

displays information concerning ‘fwum’ services

status option:

displays information concerning the status of ‘fwum’
services

upgrade option:

updates MMC firmware using parameters as specified
by <address> and <size>

<address> parameter: hexadecimal

<[x …]x>

address in RAM where data is to be read from

<size> parameter: hexadecimal

<[x …]x>

length of data in bytes to be read

rollback option:

executes manual rollback to previous firmware version

U-Boot Bootloader U-Boot Usage

ID: 1046-1856, Rev. 1.0 Page 19

DESCRIPTION: This command can be used to:

1. Info - show information about FWUM service present on IPMI
firmware

2. Status - show actual status of firmware banks

3. Upgrade - download pointed firmware into MMC and initiate firmware
upgrade procedure

4. Rollback - initiate manual firmware rollback to switch back to
previously used firmware

WARNING!

Users requiring modification to the MMC’s firmware are requested to
contact Kontron for assistance before making any changes.

USAGE: Query firmware service currently available:

COMMAND / RESPONSE:

=> fwum info

FWUM info
=========
Protocol Revision : 07h
Controller Device Id : 00h
Firmware Revision : 1.01
Number Of Memory Bank : 2
=>

fwum (FirmWare Update Manager)

U-Boot Usage U-Boot Bootloader

Page 20 ID: 1046-1856, Rev. 1.0

USAGE: Query the status of the currently available firmware images:

COMMAND / RESPONSE:

=> fwum status

FWUM status
=========

Bank State 0 : Last Known Good
Firmware Length : 143088 bytes
Firmware Revision : 1.00 SDR 16

Bank State 1 : Previous Good
Firmware Length : 146864 bytes
Firmware Revision : 1.00 SDR 32
=>

Upgrade MMC firmware:

COMMAND / RESPONSE:

=> fwum upgrade 0x20000000 0x22ef0
Start uploading firmware into bank 0
Loading: ##################################
 ##################################
 ##################################
 ##################################
 ##################################
 ##################################
 ##################################
 ##################################
 ########################
Firmware update initiated
=>

Perform manual rollback of MMC firmware

COMMAND / RESPONSE:

=> fwum rollback
Firmware rollback initiated
=>

fwum (FirmWare Update Manager)

U-Boot Bootloader U-Boot Usage

ID: 1046-1856, Rev. 1.0 Page 21

kboardinfo (Kontron BOARD INFO)

FUNCTION: Displays a summary of board and configuration information.

SYNTAX: kboardinfo

where:

kboardinfo command:

DESCRIPTION: This command collects information from various board sources and
provides a summary listing of this information:

USAGE: Display board information

COMMAND / RESPONSE:

=> kboardinfo
Board id: 0xd040
Hardware rev.: 0x0
Logic rev.: 0x1
Boot flash: Recovery Flash
In system slot: na
Geographic address: 5
Material number: na
Serial number: na
U-Boot article name: SK-FIRM-UBOOT-D0401
U-Boot material num: 1046-1471
=>

U-Boot Usage U-Boot Bootloader

Page 22 ID: 1046-1856, Rev. 1.0

kcs (Keyboard Controller Style)

FUNCTION: Provides capability for transmitting raw IPMI commands from the pay-
load CPU to the MMC and displaying response from the MMC.

SYNTAX: kcs raw [lun <lun>] <NetFn> <CMD>

… [Request Data Bytes]

where:

kcs command:

raw option:

send raw data over KCS interface

lun option:

if present: set up desired lun number of message to
send to MMC

if absent: lun is assumed to be 0

<lun> parameter: hexadecimal

parameter range: <0, 1, 2, 3>

<NetFn> parameter: hexadecimal

<[x …]x>

<CMD> parameter: hexadecimal

Request Data parameter: hexadecimal:
Bytes 1 ... n bytes (space as delimiter between bytes)

command parameters

DESCRIPTION: This command can be used to send IPMI commands in raw form to the
MMC over the KCS interface and print response.

WARNING!

As "ipmi raw" functions provide access to the majority of MMC
functionality, care must be exercised when invoking raw commands.
Improper use may cause the board to become inoperable (e.g. damage
to FRU data).

U-Boot Bootloader U-Boot Usage

ID: 1046-1856, Rev. 1.0 Page 23

USAGE: Send IPMI "Get Device ID" command (lun 0, NetFn 6, cmd 1, no data)

COMMAND / RESPONSE:

=> kcs raw lun 0x00 0x06 0x01
KCS transaction successfully completed,
rsp_size: 18 (dec)
 1c 01 00 10 80 01 00 51 b9 98 3a 00 00 d0 10…
 05 00 00
=>

Response bytes:
 - first byte presents return NetFn combined with lun
 - second presents command number
 - third presents completion code
 - further bytes are response data

In this example, the first byte (0x1c) is decoded as lun 0 (two least
significant bits) and NetFn 7 (six most significant bits)

Send IPMI "Get FRU Inventory Area" command to get information about
FRU 0 repository (lun 0, NetFn 16, cmd 10, data byte 0x00)

COMMAND / RESPONSE:

=> kcs raw 0x0a 0x10 0x00
KCS transaction successfully completed,…
rsp_size: 6 (dec)
2c 10 00 00 10 00
=>

kcs (Keyboard Controller Style)

U-Boot Usage U-Boot Bootloader

Page 24 ID: 1046-1856, Rev. 1.0

tlbdbg (Translation Look-aside Buffer DeBuG)

FUNCTION: Displays current configuration of TLB0 and TLB1

SYNTAX: tlbdbg

where:

tlbdbg command:

DESCRIPTION: This command provides information on the translation look-aside
buffers TLB0 ad TLB1 for debugging purposes during U-Boot
development or for debugging OS startup issues

USAGE: Display TLB0/TLB1 information

COMMAND / RESPONSE:

=> tlbdbg
TLBx Configuration Register : 04110200 101bc010

TLB0: [check 512 entries]
IDX PID EPN SIZE V TS RPN U0-U3 WIMGE UUUSSS

TLB1: [check 16 entries]
IDX PID EPN SIZE V TS RPN U0-U3 WIMGE UUUSSS

 0d: 00 00000000 1GB V 0d -> 0_00000000 0000 ----- ---RWX
 1d: 00 40000000 1GB V 0d -> 0_40000000 0000 ----- ---RWX
 2d: 00 ffe00000 1MB V 0d -> f_ffe00000 0000 -I-G- ---RWX
 3d: 00 80000000 1GB V 0d -> e_80000000 0000 -I-G- ---RWX
 4d: 00 ffc00000 256kB V 0d -> e_ffc00000 0000 -I-G- ---RWX
 5d: 00 f0000000 64MB V 0d -> f_f0000000 0000 -I-G- ---RWX
 6d: 00 f8000000 16MB V 0d -> f_f8000000 0000 -I-G- ---RWX
 7d: 00 ff000000 4kB V 0d -> f_ff000000 0000 -I-G- ---RWX
 8d: 00 c0000000 256MB V 0d -> d_c0000000 0000 -I-G- ---RWX
 9d: 00 d0000000 256MB V 0d -> d_d0000000 0000 -I-G- ---RWX
 10d: 00 fffff000 4kB V 0d -> 0_1ffff000 0000 -I-G- ---RWX
=>

U-Boot Bootloader U-Boot Usage

ID: 1046-1856, Rev. 1.0 Page 25

vpd (Vital Product Data)

FUNCTION: Provides display and importing functions for vital product data entities

SYNTAX: vpd print [<name>]|…

 import <name>|all_params

where:

vpd command:

print option:

displays VPD information (source: System EEPROM)

(if <name> is not used, all VPD entities are displayed)

<name> parameter: text string

<[x …]x>

name of VPD entity addressed by option

import option:

imports VPD information to the U-Boot Environment
(source: System EEPROM; target: RAM)

all_params parameter: text constant

all_params

selects all VPD entities for importing to the U-Boot
Environment

DESCRIPTION: Vital Product Data are information stored in the System EEPROM which
are required for proper operation of the board. With this command the
VPD entities can be displayed or imported to the U-Boot Environment in
RAM.

Among the VPD entities are, for example, the board serial number and
the board’s Ethernet MAC addresses.

If the option: ‘import’ is invoked, existing VPD entities in the
Environment in RAM are overwritten. If a ‘saveenv’ is then invoked, the
previously stored values in the currently active SPI NOR flash
Environment area are overwritten.

USAGE: Display all VPD entities

COMMAND / RESPONSE:

=> vpd print
<response: displays all VPD entities>

U-Boot Usage U-Boot Bootloader

Page 26 ID: 1046-1856, Rev. 1.0

Display eth1addr entity

COMMAND / RESPONSE:

=> vpd print eth1addr
eth1addr=00:80:82:47:12:02

Import eth1addr entity to Environment

COMMAND / RESPONSE:

=> vpd import eth1addr
import eth1addr = 00:80:82:47:12:02 to …
Environment

Import all VPD entities to Environment

COMMAND / RESPONSE:

=> vpd import all_params

<response: displays all imported VPD
entities; format for each imported VPD entity
as follows:>

import <name> = <value> to Environment
.
.
.
import <name> = <value> to Environment

vpd (Vital Product Data)

U-Boot Bootloader U-Boot Usage

ID: 1046-1856, Rev. 1.0 Page 27

4. U-Boot Access and Startup
Communication with U-Boot is achieved via a serial console configured for 115200 baud, 8N1.

Initially, U-Boot executes the commands defined in the environment variable ‘preboot’. Then,
if not otherwise interrupted, U-Boot pauses for the time defined in the environment variable
‘bootdelay’ and then executes the statements stored in the environment variable ‘bootcmd’. To
gain access to the U-Boot command prompt type in any single character during the boot delay
time.

If required, the boot delay function can be so configured that even when the boot delay is set
to ‘0’ to have characters, which are sent over the serial interface prior to the boot wait time, be
recognized to allow operator intervention in the boot process.

5. Environment
The Environment is stored in the same flash as U-Boot, usually in the last sector. This provides
the possibility to update U-Boot without changing the Environment. The environment can be
modified by the user with the typical commands of the ‘env’ command group: ‘setenv’, ‘editenv’,
‘printenv’ and ‘saveenv’.

Furthermore, if a larger number of boards require updating the environment can be updated by
a script, loaded from the SD card, onboard NAND flash, or a network.

A typical user modification would be to set the variable ‘bootcmd’ so that the user’s OS will boot
automatically.

6. Working with U-Boot

6.1 General Operation

Most operations are carried out using the main memory as an intermediate step. It is not pos-
sible for example to boot a kernel image directly from a tftp server. Instead, the kernel image is
first loaded to memory and then booted from there with another command.

The same is true when writing new contents to the SPI NOR flashes.

This concept is very flexible since it separates the commands which handle the loading of data
from the commands that carry out actions like booting.

6.2 Using the Network

U-Boot provides support for multiple Ethernet interfaces for transferring files from a file server.
This is accomplished using the environment variables: “ethact” and “ethrotate”.

“ethact” is used to select the required interface.

In the case of the AM4120 this is as follows:

• ethact eTSEC1 - interface is the front panel connector J2 (B)

• ethact eTSEC2 - interface is either AMC port 1 or the front panel connector J3 (A)
(depends of the hardware configuration; settable per DIP switch)

• ethact eTSEC3 - interface is AMC port 0

U-Boot Usage U-Boot Bootloader

Page 28 ID: 1046-1856, Rev. 1.0

“ethrotate” can be used to force the selection of the next available interface if, for example,
there is no link available for the selected interface.

If set to “yes” (default is “no”), U-Boot provides a status message that the next interface is se-
lected and updates the “ethact” variable accordingly. U-Boot then tries to download the file
again. This is repeated until either the file is downloaded or all interfaces have been exhausted.

In the event the link is active for the selected interface and ethrotate is yes, U-Boot tries to
download the file. If it cannot download the file, it tries the next available interface. If the file is
not available on the server, U-Boot stops trying and issues an error message.

In addition, to be able to transfer files from a tftp server to a module, the module’s IP address
(environment variable ‘ipaddr’) and the IP address of the server must be set (environment vari-
able ‘serverip’). Alternatively, it is possible to use the ‘dhcp’ or ‘bootp’ commands.

They can be set using the ‘setenv’ command. Please note, that these settings are lost after a
reset. To retain the environment permanently, use the command ‘saveenv’, which saves the
complete environment to flash.

To transfer a file from a tftp server to memory, the ‘tftpboot’ command is used, for example:

6.3 Using SD Cards

SD Cards are supported (read only) with the ‘ext2’ or ‘fat’ file system.

In both cases, the card must be rescanned first.

After that, the contents can be verified with:

in case of the ext2 file system, or

in case of the fat file system.

To load a file into memory the commands ‘ext2load’ or ‘fatload’ can be used, for example:

which loads the file ‘kernel.bin’ from the SD card to memory address 0x100000.

tftpboot 100000 filename

mmc rescan 0

ext2ls mmc 0

fatls mmc 0

ext2load mmc 0 100000 kernel.bin

U-Boot Bootloader U-Boot Usage

ID: 1046-1856, Rev. 1.0 Page 29

6.4 Using the Onboard NAND Flash

The onboard NAND Flash is supported with the ‘ubi’ filesystem. The access is read only so the
filesystem and its contents must be prepared with Linux first.

As a prerequisite, the environment variables ‘mtdids’ and ‘mtdparts’ must be set correctly.

‘mtdids’ identifies the NAND chip to use while mtdparts defines the partitions.

Example:

This defines the first NAND chip (nand0) to be used with the name ‘chip1’. The chip contains
one partition ‘all’ which occupies the whole chip.

The next command sets the partition ‘all’ to be used with the ‘ubi’ layer:

Now, an ‘ubi’ volume can be mounted; in this example volume ‘boot’:

After the volume is mounted, its contents can be listed:

or a file loaded, in this case ‘kernel.bin’ to address 0x100000:

6.5 Using the Onboard Parallel NOR Flash

The onboard parallel NOR flash is not used together with a file system, it is used raw. It does
not contain any U-Boot components and is completely free for the user usage. It's primary func-
tion is to store VxWorks® bootroms and images.

To program an image to the NOR flash, it must first be loaded to memory from an arbitrary
source. It can then be programmed with the ‘cp’ command. The flash must be erased before
the NOR flash is programmed. To achieve this, use the ‘erase’ command.

Example: Programming a test file ‘test.img’ from an SD card using the ‘ext2’ file system:

This example assumes, that the size of ‘test.img’ is less than 64 kB. The environment variable
‘filesize’ is set automatically when a file is loaded to memory and can be used for convenience
here.

setenv mtdids nand0=chip1
setenv mtdparts mtdparts=chip1:-(all)

ubi part all

ubifsmount boot

ubifsls

ubifsload 100000 kernel.bin

erase f0000000 f000ffff
mmc rescan 0
ext2load mmc 0 100000 test.img
cp.b 100000 f0000000 ${filesize}

U-Boot Usage U-Boot Bootloader

Page 30 ID: 1046-1856, Rev. 1.0

6.6 Booting an OS
6.6.1 Booting Linux

To boot Linux, at least a kernel image and a FDT (Flattened Device Tree) must be loaded to
memory. Optionally, an ‘initrd’ can be loaded.

Furthermore, a command line must be prepared in the environment variable ‘bootargs’.

The boot itself is initiated with the ‘bootm’ command.

To simplify the setup of the board, three predefined scripts are already programmed in the de-
fault environment:

• ‘nfsboot’ to boot from a tftp server and mount the root over NFS
• ‘nandboot’ to boot from the NAND flash and also mount it as root
• ‘sdboot’ to boot from a SD Card and also mount it as root

For a one-time-only bootup, this can be accomplished with the ‘run’ command, for example:

To make this permanent and have the board execute it automatically, it must be stored in the
‘bootcmd’ environment variable and the environment must be saved to flash.

Example:

6.6.2 Booting VxWorks
To boot a Wind River VxWorks image, a U-Boot Image file of the corresponding (ROM-able)
VxWorks binary image and an FDT (Flattened Device Tree) must be loaded to memory.

By default U-Boot operates on ‘uImage’ files (U-Boot Image) which contain a special header
and in the data portion the operating system binary image. The special header defines various
properties of the U-Boot image (e.g. load address and entry point for the binary image in the
data portion). Both the header and the data portion of the U-Boot image are secured and
checked against corruption by a CRC32 checksum at U-Boot load time.

All VxWorks (ROM-able) binary images will be converted to an U-Boot image at build time of
the suiting Wind River Workbench projects based on the dedicated Kontron Modular
Computers VxWorks BSP (Board Support Package). This conversion will be carried out by a
Kontron Modular Computers JAVA based version of the U-Boot tool ‘mkImage’ which is
invoked by BSP provided Wind River Workbench project settings automatically.

On successful build of the VxWorks binary (ROM-able) image an additional U-Boot image file,
containing the VxWorks (ROM-able) binary image will be generated in the project default build
folder with the following naming conventions:

run nfsboot

setenv bootcmd 'run nandboot'
saveenv

U-BOOT IMAGE NAME VXWORKS IMAGE NAME

uImage.bootrom.bin bootrom.bin

uImage.bootrom_uncmp.bin bootrom_uncmp.bin

uImage.vxWorks_rom.bin vxWorks_rom.bin

uImage.vxWorks_romCompress.bin vxWorks_romCompress.bin

U-Boot Bootloader U-Boot Usage

ID: 1046-1856, Rev. 1.0 Page 31

Please note, that the resulting U-Boot image contains all needed information for a proper
U-Boot load process and start of the contained VxWorks binary (ROM-able) image. Therefore
it is strongly recommended to utilize the corresponding U-Boot image listed above when using
U-Boot for booting VxWorks.

The VxWorks U-Boot image file and FDT are typically stored in and loaded from onboard par-
allel NOR flash.

The boot itself is initiated with the ‘bootm’ command. To perform autobooting of a VxWorks im-
age requires that appropriate U-Boot environment variables or script(s) be defined for the boot
operation to be performed. For more detailled information with examples of boot command se-
quences, refer to the Kontron VxWorks BSP online documentation.

For more information on how to configure and build VxWorks images and how to utilize them
e.g. for a subsequent VxWorks boot process, please refer to the appropriate Wind River doc-
umentation.

6.7 Getting Help

U-Boot was configured with support for longhelp. That means, that for every command, online
help is available while working with the system. To access the online help, enter '?' or 'help' at
the console prompt. This will show an overview over all available commands. To get specific
help, enter '? <command/command group' or 'help <command/command group'.

For example to get help on the 'saves' command enter '? saves'.

To get help on the mmc command group enter ‘? mmc’.

=> ? saves
saves - save S-Record file over serial line
Usage:
saves [off] [size] [baud]
 - save S-Record file over serial line with offset 'off', size
'size' and
 baudrate 'baud'
=>

=> ? mmc
mmc - MMC sub system
Usage:
mmc read <device num> addr blk# cnt
mmc write <device num> addr blk# cnt
mmc rescan <device num>
mmc part <device num> - lists available partition on mmc
mmc list - lists available devices
=>

U-Boot Usage U-Boot Bootloader

Page 32 ID: 1046-1856, Rev. 1.0

6.8 Update

The environment contains two scripts which allow an update of various components, e.g.
U-Boot, bootrom for VxWorks, data in E2PROMs, etc.

The script ‘update’ checks for a U-Boot script ‘update’ in the directory ‘update’ in the first par-
tition of the SD card with ‘ext2’ or ‘fat’ filesystem. If unsuccessful, the check continues with the
first NAND chip, volume ‘boot’, and again U-Boot searches in the subdirectory ‘update’ for the
script ‘update’. If the script ‘update’ is found, it is loaded to memory and executed.

So, to actually execute an update, e.g. a SD card should be prepared with a directory 'update'
on the first partition. Kontron provides an update e.g. for U-Boot as a compressed archive (zip,
tar.bz2, tar.gz) which must be unpacked in the directory ‘update’.

After the SD card is inserted, U-Boot should be stopped at the console after power up. To man-
ually start the update, enter the following command:

In the case of a U-Boot update, only the standard SPI NOR flash is updated.

The script ‘netupdate’ tries to load a U-Boot script ‘update/update’ from the server. If found, it
is loaded to memory and executed as in the case of the SD card.

As the script ‘netupdate’ requires access to a server, the environment variable ‘serverip’ must
be set correctly. Alternatively, it is possible to use the ‘dhcp’ or ‘bootp’ commands.

An automatic run of the update script at every startup takes place if the update script is started
in the preboot environment variable:

6.9 Recovery Mechanism

The are two SPI NOR flashes available with each device holding a copy of U-Boot. In case the
contents of the standard SPI NOR flash have been corrupted (e.g. as a result of a power failure
during an update), the IPMI subsystem detects the problem, switches the flashes and restarts
the CPU. The board starts from the recovery SPI NOR flash. In this state, the standard SPI
NOR flash can be programmed again with the ‘update’ or ‘netupdate’ scripts described in the
previous chapter “6.8 Update”.

The update scripts provided ensure that prior to the update the standard SPI NOR flash is se-
lected and the U-Boot update image is available and correct.

The contents of the recovery SPI NOR flash should never be updated in order to avoid a com-
pletely inoperable system with no accessing capability.

run update

setenv preboot 'run update'
saveenv

	Revision History
	Imprint
	Disclaimer
	Table of Contents
	Copyrights and Licensing
	Obtaining Source Code
	1. Introduction to U- Boot
	2. Standard U- Boot Commands
	3. Kontron Specific Commands
	3.1 Command List
	3.2 Command Syntax Reference

	4. U- Boot Access and Startup
	5. Environment
	6. Working with U- Boot
	6.1 General Operation
	6.2 Using the Network
	6.3 Using SD Cards
	6.4 Using the Onboard NAND Flash
	6.5 Using the Onboard Parallel NOR Flash
	6.6 Booting an OS
	6.6.1 Booting Linux
	6.6.2 Booting VxWorks

	6.7 Getting Help
	6.8 Update
	6.9 Recovery Mechanism

