

» Kontron Software Guide «

The pulse of innovation

» Table of Contents «

1	User Information1
1.1	About This Document
1.2	Copyright Notice
1.3	Trademarks
1.4	Standards1
1.5	Warranty
1.6	Life Support Policy
1.7	Technical Support
2	U-Boot Setup3
2.1	Setup Command
2.2	Setup Usage3
2.3	Display Menu
2.3.1	Boot Display
2.3.2	LCD Panel Resolution
2.3.3	Backlight Brightness
2.5.4	Davides Monu
2.4.1	PCT Express [®] Interface
2.4.2	Audio Device
2.4.3	GPIO Interface
2.5	Miscellaneous Menu
2.5.1	Extended Temperature Range6
2.5.2	Temperature Alert Output6
2.5.4	Temperature High Limit
2.5.5	Temperature Low Limit7
2.6	Password Command
2.7	Defaults Command7
2.8	Save Command7
2.9	Summary Command
3	VESA [®] DisplayID [™] 9
3.1	LCD/LVDS Technology Overview9
3.1.1	Detailed Timing Descriptor9
3.1.2	24 Bit Color Mapping Tips 11
3.2	EDID 1.3 Specification (VESA®)12
3.3	DisplayID [™] Specification (VESA [®])12
3.3.1	DisplayID [™] Parameter Summary
3.3.2	DisplayID [™] Restrictions
3.3.3	LCD Panel Selection

3.3.4 3.3.5 3.3.6 3.3.7	DisplayID [™] Windows [®] Tool 14 Building DisplayID [™] File 15 Erasing DisplayID [™] Record 15 U-Boot EEPROM Update Tool 15
4	KTT20 Tool Package
5	Bootloader Modification and Download19
5.1 5.2 5.2.1 5.2.2	Program IMAGECREATOR20NVFLASH Download Tool21Windows® Operation21Linux® Operation23
6	SMSC [®] USB Hub and LAN Controller
7	Alternative Linux [®] Distributions
8	U-Boot Compilation
8.1	Hardware Components Compatibility29
8.2	GPIO Declarations
8.3	UART Declarations
8.4	Linux [®] Environment on Windows [®]
9	Linux [®] BSP
9.1	User Login Arguments
9.2	Video Decoding
9.2.1	Reencoding Examples
9.3	Audio Settings
9.4	PCI Express [®] Interface
9.5	CPU Frequency Management
9.6	KEAPI Interface
9.6.1	KEAPI Command Line Tools
10	Android TM BSP
10.1	Graphics Interface41
10.1.1	DVI [®] Monitor
10.1.2	Video Decoding 41
10.3	Display Density
10.4	GPIOs, Temperatures, Backlight and Bootcounter
10.4.1	GPIOs
10.4.2	Temperatures
10.4.5	Bootcounter

11	Windows [®] Embedded Compact 7 (WEC7) BSP	44
11.1	U-Boot Settings	44
11.1.1	Boot from microSD Card	44
11.1.2	Boot from USB key	44
11.2	Video Decoding	45
11.3	Raster Font Support	45
11.4	Graphics Interface	46
11.4.1	DVI [®] Monitor	46
11.4.2	LCD Panel	46
11.5	$I^2 C^{TM}$ Support	47
11.6	Watchdog Example	47
11.7	GPIO Examples	49
Appendix A: Reference Documents		
Appendix B: Document Revision History		

1 User Information

1.1 About This Document

This document provides information about products from KONTRON Technology A/S and/or its subsidiaries. No warranty of suitability, purpose or fitness is implied. While every attempt has been made to ensure that the information in this document is accurate the information contained within is supplied "as-is" - no liability is taken for any inaccuracies. Manual is subject to change without prior notice.

KONTRON assumes no responsibility for the circuits, descriptions and tables indicated as far as patents or other rights of third parties are concerned.

1.2 Copyright Notice

Copyright © 2012 - 2013, KONTRON Technology A/S, ALL RIGHTS RESERVED.

No part of this document may be reproduced or transmitted in any form or by any means, electronically or mechanically, for any purpose without the express written permission of KONTRON Technology A/S.

1.3 Trademarks

Brand and product names are trademarks or registered trademarks of their respective owners.

1.4 Standards

KONTRON Technology A/S is certified to ISO 9000 standards.

1.5 Warranty

This product is warranted against defects in material and workmanship for the warranty period from the date of shipment. During the warranty period KONTRON Technology A/S will at its discretion decide to repair or replace defective products.

Within the warranty period the repair of products is free of charge as long as warranty conditions are observed.

The warranty does not apply to defects resulting from improper or inadequate maintenance or handling by the buyer, unauthorized modification or misuse, operation outside of the product's environmental specifications or improper installation or maintenance.

KONTRON Technology A/S will not be responsible for any defects or damages to third party products that are caused by a faulty KONTRON Technology A/S product.

1.6 Life Support Policy

KONTRON Technology's products are not for use as critical components in life support devices or systems without express written approval of the general manager of KONTRON Technology A/S. As used herein:

Life support devices or systems are devices or systems which

a) are intended for surgical implant into body or

b) support or sustain life and whose failure to perform, when properly used in accordance with instructions for use provided in the labelling, can be reasonably expected to result in significant injury to the user.

A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

1.7 Technical Support

Please consult our web site at http://www.kontron.com/support for the latest product documentation, utilities, drivers and <u>support contacts</u> or use the special e-mail address **sbc-support@kontron.com** for a technical problem. In any case you can always contact your board supplier for technical support. Before contacting support please be prepared to provide as much information as possible: Board identification:

- Type
- Part number (find PN on label)
- Serial number (find SN on label)

System environment:

- □ 0/S type and version
- Driver origin and version
- Attached hardware (drives, USB devices, LCD panels ...)

2 U-Boot Setup

The sense of a special Setup part is to avoid expendable changes in the proper operating systems. The Setup entries are valid for all supported operating systems (e.g. Linux[®], Android[™] and Windows[®] Embedded Compact). For example if you switch from Linux[®] to Android[™] or vice versa in the ideal case no changes will be necessary. The Setup data records are stored in a non-volatile memory (EEPROM) and not in an erasable script. A possible password input protects from unauthorized access.

The KONTRON Setup provides three configurable main menus:

- □ display
- □ devices
- □ misc

The display menu allows to define one or more boot displays, the resolution of a LCD panel and backlight parameters. The devices part involves some hardware device settings, e.g. audio controller enabled or disabled. The misc menu contains special features, e.g. temperature control.

ATTENTION

Only the original KONTRON BSPs guarantee the realization of the U-Boot Setup features.

2.1 Setup Command

For a help screen type the command without an argument

setup

Now you can see all the supported sub-commands (menus). Normally the following entries are displayed

display	display settings
devices	onboard device configuration
misc	miscellaneous settings
password	password input
defaults	reset all settings to the default values
summary	show all actual settings
save	save all settings to EEPROM

Syntax example: setup display <Enter>

2.2 Setup Usage

After the execution of a sub-command (e.g. setup misc) the selection of a submenu requires only a numeric value. Thereafter the real settings are visible. Now you can choose between an alphanumeric (default) or a numeric input. The alphanumeric presentation illustrates intuitive the right choice. If you favor the numeric input delete all chars with the <Backspace> key, type the number and then press the <Enter> key. With the <Cursor up> key previous keyboard inputs are recallable for a quick repetition of often used commands.

After the completion of all changes it is reasonable to control the settings with the summary command. <u>Syntax:</u> setup summary <Enter>

Page 4

2.3 Display Menu

This menu part includes several display settings

- define the first boot display
- define the second boot display
- determine a resolution for the lcd panel
- define the backlight brightness
- define the backlight output level

2.3.1 Boot Display

The NVIDIA[®] Tegra 250 implies a <u>Graphics Processing Unit (GPU)</u> with two independent display controllers. Without a restriction (except duplicate usage) each controller interface can be configured as

- **none** switch off the display controller
- 🗆 dvi
- \Box lcd

Examples:

First boot display	dvi
Second boot display	none
or	
First boot display	none
Second boot display	lcd
or	
First boot display	dvi
Second boot display	lcd
or	
First boot display	lcd
Second boot display	dvi

2.3.2 LCD Panel Resolution

You have the choice to select a panel resolution with a fixed timing or a special setting 'auto' for a free definable timing based on the VESA[®] DisplayIDTM specification. For further details about DisplayIDTM see the chapter 'VESA[®] DisplayIDTM'. The KTT20/pITX supports following resolutions

- □ auto free timing based on VESA[®] DisplayID[™]
- **vga** fixed timing 640x480 pixel, 18 bit color depth
- wvga fixed timing 800x480 pixel, 18 bit color depth
- □ svga fixed timing 800x600 pixel, 18 bit color depth
- **xga** fixed timing 1024x768 pixel, 24 bit color depth

2.3.3 Backlight Brightness

This submenu allows the definition of the analog backlight brightness (voltage range: 0V to +5V). The input format is represented by a decimal number with maximal three digits. Examples:

Brightness: 0 minimal value = 0V or Brightness: 128 half range = +2.5V or Brightness: 255 maximal value = +5V

2.3.4 Backlight Output Level

Some backlight inverters need a low level for the enable signal, other inverters a high level (normally +5V). Use this submenu to configure the right enable output level; two options are available

low	voltage = 0V
high	voltage = +5V

2.4 Devices Menu

This menu part defines several hardware device settings

- **PCI Express settings**
- **Audio settings**
- **GPIO** settings

2.4.1 PCI Express[®] Interface

The selection is limited to the enable respectively disable feature

- □ disabled
- enabled

2.4.2 Audio Device

The selection is also limited to the enable respectively disable feature

- □ disabled
- □ enabled

2.4.3 GPIO Interface

You can choose between three modes: all interface signals are defined as GPIOs (<u>G</u>eneral <u>P</u>urpose <u>I</u>nput <u>O</u>utput) or some special signals have another function (I^2C^{TM} , SPITM respectively SDIO). For a detailed overview about these signals see the 'KTT20/pITX Users Guide' chapter 'Digital I/O Interface'. The signals are named GPIO16 to GPIO21 respectively GPIO23 to GPIO29, GPIO32 and GPIO36 to GPIO37.

<u>Remark:</u> the operating systems do not support most of these special functions because the possible applications can be too different. Following the possible options

- 🗆 gpio
- 🗆 i2c-spi
- 🗆 sdio

2.5 Miscellaneous Menu

This menu part defines several special features (currently only temperature sensor features)

- Extended temperature range
- **Temperature alert output**
- **Temperature high limit**
- **Temperature low limit**

2.5.1 Extended Temperature Range

The default temperature range of the sensor is 0° C to $+127^{\circ}$ C. If you activate the extended range you can measure a temperature between -55° C and $+150^{\circ}$ C. There are two options

- □ disabled
- □ enabled

2.5.2 Temperature Alert Output

In some cases it can be useful to disable the alert output. With this submenu is it possible to set this alarm signal to

- **disabled**
- enabled

2.5.4 Temperature High Limit

The temperature high limit controls the alert output. Dependent on the extended temperature setting the limit can be up to $+150^{\circ}$ C. The input format is represented by a decimal number with maximal three digits. <u>Example:</u>

Temp high limit: 75

2.5.5 Temperature Low Limit

The temperature low limit controls the alert output. Dependent on the extended temperature setting the limit can be down to -55° C. The input format is represented by a decimal number with maximal three digits. <u>Example:</u>

Temp low limit: 5

2.6 Password Command

If you want to control the access to the Setup settings it is possible to use a password protection. Maximal eight alphanumeric chars, numbers or special characters are admissible. You can delete an old password respectively cancel the password protection with the input of an empty string.

Syntax: setup password <Enter>

Example:

New password: ******* e.g. 12%&fgWQ Verify password: ****** the same

2.7 Defaults Command

In some cases it can be useful to reset quickly the Setup settings. For an example there is a problem with driving of a <u>single</u> display - preferably a LCD panel - and the connection of a DVI[®] monitor is possible.

Syntax: setup defaults <Enter>

The most important default settings are

First boot display	none
Second boot display	dvi
PCI Express settings	enabled
Audio settings	enabled
GPIO settings	gpio
Extended temperature range	disabled

2.8 Save Command

This is one of the most important sub-commands. Without this calling all Setup changes are lost after power off. The save instruction writes the temporary Setup settings into the non-volatile memory device (EEPROM).

Syntax: setup save <Enter>

2.9 Summary Command

This Setup command gives a quick overview about all actual settings. An additional feature is the bootcounter report.

Syntax: setup summary <Enter>

Example:

DISPLAY PART:	
Boot display 1	: dvi
Boot display 2	: Icd
LCD resolution	: wvga
Brightness	: 128
Backlight enable level	: high
DEVICES PART:	
PCI Express interface	: enabled
Audio interface	: disabled
I/O interface	: gpio
MISC PART:	
Extended temp range	: disabled
Temp alert output	: disabled
Temp high limit	: 80
Temp low limit	: 0
Bootcounter	: 100

3 VESA[®] DisplayID[™]

3.1 LCD/LVDS Technology Overview

3.1.1 Detailed Timing Descriptor

The input fields Pixel Clock, Horizontal Active, Horizontal Blank, Horizontal Sync Offset, Horizontal Sync Width, Vertical Active, Vertical Blank, Vertical Sync Offset and Vertical Sync Width must be filled in with the correct values according to the panel's data sheet. In many cases the value for Horizontal/Vertical Blank cannot be read directly from the data sheet. Instead terms such as Display Period (active pixels/lines) or Horizontal/Vertical Total appear.

In this case the following calculation can be made:

⇒ Blank Value = Total Value - Active Value.

Sometimes the datasheet does not specify Sync Offset and/or Sync Width. In this case the permissible values can only be determined through testing. However the rule is:

⇒ The sum of Sync Offset and Sync Width must not exceed the value for Horizontal/Vertical Blank. Also datasheets are often different for displays with double pixel clock. If Pixel Clock and Horizontal Values seem to be halved this must be corrected for input:

⇒ The values must always be entered as though it were a panel with single pixel clock.

Example 1:

PRIMEVIEW PM070WL4 (single pixel clock)

Data sheet specifications:	,		
Clock Frequency [typ.]	32 MHz		
HSync Period [typ.]	1056 Clocks	(equivalent to Horizontal Total)	
HSync Display Period [typ.]	800 Clocks	(equivalent to Horizontal Active)	
HSync Pulse Width [typ.]	128 Clocks		
HSync Front Porch [typ.]	42 Clocks		
HSync Back Porch [typ.]	86 Clocks		
VSync Period [typ.]	525 Lines	(equivalent to Vertical Total)	
VSync Display Period	480 Lines	(equivalent to Vertical Active)	
VSync Pulse Width [typ.]	2 Lines		
VSync Front Porch [typ.]	10 Lines		
VSync Back Porch [typ.]	33 Lines		
Result:			
Pixel Clock	32		
Horizontal Active	800		
Horizontal Blank	256	$((128 + 42 + 86) \rightarrow H.$ Pulse Wic	dth + H. Front Porch + H.
			Back Porch)
Horizontal Sync Offset	42	(H. Front Porch)	
Horizontal Sync Width	128	(H. Pulse Width)	
Vertical Active	480		
Vertical Blank	45	$((2 + 10 + 33) \rightarrow V.$ Pulse Width	+ V. Front Porch + V. Back Porch)
Vertical Sync Offset	10	(V. Front Porch)	•
Vertical Sync Width	3	(V. Pulse Width)	

Example 2 (not useable on KTT20/pITX):

ouble pixel clock)

Data sheet specifications (no definition of Sync Offset and Sync Width):

	Clock Frequency [typ.] Horizontal Period (1) [typ.] Horizontal Display Period Vertical Period [typ.] Vertical Display Period	54 MHz 844 Clocks 640 Clocks 1066 Lines 1024 Lines	(equivalent to Horizontal Total) (equivalent to Horizontal Active) (equivalent to Vertical Total) (equivalent to Vertical Active)
R	esult:		
	Pixel Clock	108	(2 x 54 MHz)
	Horizontal Active	1280	(2 x 640 Clocks)
	Horizontal Blank	408	((844 – 640) x 2 Clocks)
	Horizontal Sync Offset	45	(normally approx. 10 – 15 % of Horizontal Blank)
	Horizontal Sync Width	140	(normally approx. 30 – 70 % of Horizontal Blank)
	Vertical Active	1024	
	Vertical Blank	42	(1066 – 1024 Lines)
	Vertical Sync Offset	1	(normally approx. 1 – 3 Lines)
	Vertical Sync Width	3	(normally approx. 1 – 15 Lines)

Example 3 (not useable on KTT20/pITX):

LG-PHILIPS LM170E01-TLA1 (double pixel clock)

Data sheet specifications:		
Clock Frequency [typ.]	54 MHz	
Hsync Period [typ.]	844 Clocks	
Horiz. Valid [typ.]	640 Clocks	
Horiz. Back Porch [typ.]	124 Clocks	
Horiz. Front Porch [typ.]	24 Clocks	
Vsync Period [typ.]	1066 Lines	
Vert. Valid [typ.]	1024 Lines	
Vert. Back Porch [typ.]	38 Lines	
Vert. Front Porch [typ.]	1 Line	
Result:		
Pixel Clock	108	(2 x 54 MHz)
Horizontal Active	1280	(2 x 640 Clocks \rightarrow Horizontal Addr. Time)
Horizontal Blank	408	((844 – 640) x 2 Clocks)
Horizontal Sync Offset	48	(2 x 24 Clocks \rightarrow Horizontal Front Porch)
Horizontal Sync Width	112	$(((408/2 - 124 - 24) \times 2) \rightarrow H.$ Blank – H. Back Porch – H.
		Front Porch)
Vertical Active	1024	(Vertical Addr. Time)
Vertical Blank	42	(1066 – 1024 Lines)
Vertical Sync Offset	1	(Vertical Front Porch)
Vertical Sync Width	3	(Vertical Blank – Vertical Back Porch – Vertical Front Porch)

The following picture shows the typical video timing.

Timing Parameter Definitions

3.1.2 24 Bit Color Mapping Tips

The double pixel clock or 24-bit color depth can generally be taken from the datasheet. There are two interface modes existing at 24-bit color depth: **FPDI** (<u>Flat Panel Display Interface</u>) or **LDI** (<u>LVDS Display Interface</u>). Some panels use the line SELL LVDS (<u>SEL</u>ect Lvds data order). The LVDS data assignment in the datasheet can give you an indication by the last channel (e.g. RX3/TX3 – SELL LVDS = low) wether it is a LDI panel (contains the lowest bits). Most panels have a FPDI interface.

Example:

FPDI data assignment (LVDS channel 3 even or odd):

Tx/Rx27	Red 6 (e.g. even: RE6 or ER6)
Tx/Rx5	Red 7
Tx/Rx10	Green 6 (e.g. even: GE6 or EG6)
Tx/Rx11	Green 7
Tx/Rx16	Blue 6 (e.g. even: BE6 or EB6)
Tx/Rx17	Blue 7
Tx/Rx23	not used

LDI data assignment (LVDS channel 3 even or odd):

Tx/Rx27	Red 0 (e.g. even: RE0 or ER0)
Tx/Rx5	Red 1
Tx/Rx10	Green 0 (e.g. even: GE0 or EG0)
Tx/Rx11	Green 1
Tx/Rx16	Blue 0 (e.g. even: BE0 or EB0)
Tx/Rx17	Blue 1
Tx/Rx23	not used

3.2 EDID 1.3 Specification (VESA[®])

The EDID (<u>Extended D</u>isplay Identification Data) record has a fixed structure. The first 8 bytes contain the distinctive identification 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xO0. The end of the record is marked by the checksum (1 byte). The result of the addition of all bytes including the checksum has to be zero.

For a comprehensive support of the majority of available panels you don't need all fields of the EDID record. The **Detailed Timing Descriptor** (18 bytes) is the most important field. No 24bit panels (FPDI/LDI) are supported though. This means EDID should only be used for 18bit panels.

For further information please consult the official EDID specification from the VESA[®] comitee which has to be payed.

3.3 DisplayID[™] Specification (VESA[®])

Intended as a replacement for all previous EDID versions DisplayID[™] contains many new features. It's a structure with several well defined elements (tags). Not every element that is listed in the specification has to be part of the resulting data set (basic section).

KONTRON has decided to use this selection of tags (mandatory presence).

Tag	Description
0x00	Product Identification Data Block (Vendor ID, Product Code, Manufacturing Date)
0x03	Type I Detailed Timing Data Block (Pixel Clock, Horizontal/Vertical Data)
0x0C	Display Device Data Block (Device Technology, Operating Mode, Color Depth)
0x0D	Interface Power Sequencing Data Block (Power On/Off Timing)
0x0F	Display Interface Data Block (Interface Type, Interface Attribute)

3.3.1 DisplayID[™] Parameter Summary

Only a part of the parameters used in the DisplayID[™] Windows[®] tool are interpreted by a specific board. The following table shows a summary of the used parameters (valid for KTT20/pITX).

Group	Parameter	Comment
Type I Timing	Pixel Clock	
Type I Timing	Horizontal Active	
Type I Timing	Horizontal Blank	
Type I Timing	Horizontal Sync Offset	Front porch
Type I Timing	Horizontal Sync Width	
Type I Timing	Vertical Active	
Type I Timing	Vertical Blank	
Type I Timing	Vertical Sync Offset	Front porch
Type I Timing	Vertical Sync Width	
Display Interface 1	Bits per Pixel	Color depth (18 or 24bit)

3.3.2 DisplayID[™] Restrictions

Depending on the graphic controller not all features can be used. The following table shows the most important restrictions.

Restrictions for KIT20/pITX	
Panels with dual or quad clock not supported (2 or 4 Pixel per Clock)	
Variable power sequencing not supported	

3.3.3 LCD Panel Selection

The choice of a LCD display is basically defined by two parameters.

Parameter	Value
Pixel per Clock (Channels)	1
Pixel Clock Range	tdb. MHz

Currently this leads to a maximum resolution of

1280 x 800 Pixel

With NVIDIAs[®] graphic driver it is not guaranteed that every resolution can be achieved. KONTRON does not guarantee the correct function of the board for untypical resolution. In principal the use of DisplayIDTM allows realizing every special display resolution. For this a valid DisplayIDTM dataset must be written to the onboard EEPROM. Additionally the U-Boot Setup entry

setup display -> submenu [3] -> LCD resolution

must be set to auto.

3.3.4 DisplayID[™] Windows[®] Tool

The DisplayID[™] parameter can be modified with the DisplayID[™] Windows[®] tool.

For an example the following picture shows the input fields for the **Detailed Timing** parameters.

KONTRON DisplayID Editor V2.01			
Display Interf. 1 Display Interf. 2 Display Interf. 3 Display Device Power Seq. 1 Power Seq. 2 Product Identification Type I Timing			
The detailed tin	ning block descrit Pixel Cloc Clock (kHz)	bes the panel nati :k) 380	ve timing.
Edite	Active Blank	Horizontal (Clks/kHz) 800 224	Vertical (Lines/Hz) 600 24
yID	Sync Offs. Sync Width	32 80	3
ispla	Total Frequency	1024 37.11	624 59.47
Ø			Calculate
		OK	Abbrechen

For more information see the documentation of the DisplayIDTM tool (software can be downloaded from kontron.com).

The DisplayIDTM Editor saves the parameters in a intermediate file format. The file extension is 'KDD' (<u>K</u>ontron <u>D</u>isplayIDTM <u>D</u>ata). This file format cannot be used to program the onboard EEPROM. For transferring this file format into the binary file format for the EEPROM apply the Converter.

3.3.5 Building DisplayID[™] File

- Start the Windows[®] tool **DisplayID.exe**.
- ② Use the Editor if you want to modify an existing DisplayID[™] file or select New to create a complete new record.
- **6** Change respectively enter new parameters.
- Save the parameters in a file with the extension 'KDD'.
- **6** Open the saved 'KDD'-file using the **Converter**.
- **(b)** Save the binary file with the extension 'KDB' (<u>K</u>ontron <u>D</u>isplayIDTM <u>B</u>inary).
- Program the onboard EEPROM using the board specific update tool.

3.3.6 Erasing DisplayID[™] Record

Create a dummy file with a size of 128 bytes filled with the value 0xFFh and program this file using the U-Boot update tool. This treatment deletes a valid DisplayID[™] record.

3.3.7 U-Boot EEPROM Update Tool

The update tool is a new component of the U-Boot bootloader. You need two commands to program a DisplayID[™] file into the EEPROM:

- **ext2load**, fatload, loadb or loady
- □ writedid

File Operation

The following example gives an overview:

The storage medium is a USB key formatted with a Linux[®] partition and the DisplayID[™] file **wvga.kdb** is located in the root directory. No other USB keys are present. The file size of **wvga.kdb** amounts 81 bytes. For loading the file into memory type the following standard U-Boot command line

ext2load usb 0 A00800 wvga.kdb

The memory address (0xA00800) is free selectable. With the **md** command you can control the result

md.b A00800 80

Now you can load the memory content into the EEPROM. Type the new KONTRON U-Boot command

writedid A00800 51

The 'count' respectively the size argument is a very important parameter. Do not use another value as the file size of your DisplayID[™] file.

Serial Download

The following example demonstrates a serial download via the ymodem protocol: The KTT20/pITX board is connected to a desktop computer with a suitable terminal program (e.g. Hyper-Terminal or TeraTerm). The file size of **wvga.kdb** amounts 81 bytes.

For downloading the file into memory type the following standard U-Boot command line

loady

Now U-Boot waits for reply. User input to the desktop terminal program starts the download session. After the download of **wvga.kdb** ends you can control the result with the md command (the memory address 0x408000 is fixed)

md.b 408000 80

Now you can load the memory content into the EEPROM. Type the new KONTRON U-Boot command

writedid 408000 51

The 'count' respectively the size argument is a very important parameter. Do not use another value as the file size of your DisplayID[™] file.

4 KTT20 Tool Package

The KTT20 Tool Package contains all needed drivers and tools as described below. A short overview:

ICreator		ImageCreater program (Windows [®])
<u></u>	Convert.exe	Console program (auxiliary program)
	ImageCreator.exe	Main program
<u> </u>	README.txt	Important additional information
····	SPI.cfg	Configuration file
[^{***}]	SPI_Flasher.bin	Special U-Boot flash version
NVFLASH_	Linux	
	SDRAM	Executes U-Boot in SDRAM
	🎍 ktt20.sh	Shell script file
	SPI	Programs U-Boot into SPI^{TM} flash
	\land spi.sh	Shell script file
····	KTT20.bct	Binary configuration table file
[^{***}]	KTT20.cfg	Configuration file
4	nvflash	Main program
NVFLASH_	Windows	
	SDRAM	Executes U-Boot in SDRAM
	KTT20.bat	Batch script file
	SPI	Programs U-Boot into SPI [™] flash
	💐 SPI.bat	Batch script file
····	KTT20.bct	Binary configuration table file
····	KTT20.cfg	Configuration file
<i></i>	lipnv3p.dll	Auxiliary file
	lipnvaes_ref.dll	Auxiliary file
	lipnvapputil.dll	Auxiliary file
	lipnvboothost.dll	Auxiliary file
	lipnvdioconverter.dll	Auxiliary file
	lipnvflash.dll	Auxiliary file
	lipnvos.dll	Auxiliary file
	lipnvusbhost.dll	Auxiliary file
	nvflash.exe	Main program

USB-Driver_Windows

🗖 32bit		32 bit <u>C</u> lient <u>P</u> ort <u>D</u> river (CPD)
	NOTICE.txt WdfCoInstaller01009.dll WinUSBCoInstaller2.dll WUDFUpdate_01009.dll	Copyright information Driver file Driver file Driver file
🗖 64bit		64 bit <u>C</u> lient <u>P</u> ort <u>D</u> river (CPD)
[]] # # #	NOTICE.txt WdfCoInstaller01009.dll WinUSBCoInstaller2.dll WUDFUpdate_01009.dll	Copyright information Driver file Driver file Driver file
<i>灣</i> CPDW	inUSB.inf	Driver installation file

5 **Bootloader Modification and Download**

If you want to create your own bootloader and load it into the SPI[™] flash device you must execute several steps or you use the KONTRON Windows[®] Image Creator. The KONTRON tool generates a special image file which can be downloaded with NVIDIAs[®] NVFLASH tool into the RAM. Thereafter one part of the image executes a script and program the bootloader into the SPI[™] flash device.

ATTENTION

It is impossible to use another boot device as the SPI[™] flash (e.g. the NAND flash) because the boot device is hardcoded.

The image file includes three modules:

- One special U-Boot version with a script (named SPI-FLASHER)
- One <u>Binary Configuration Table (BCT)</u>, content definition by NVIDIA[®]
- One custom bootloader for the SPITM flash device

The first component represents an unchangeable U-Boot version. Do not replace this module with another program.

The Binary Configuration Table is realized as an ASCII file for special usage of the KONTRON Image Creator which contains several parameters for SPITM flash and SDRAM configuration. An extract:

Version=0x00020001; BlockSize=0x00008000; PageSize=0x0000800; PartitionSize=0x01000000;

DevType[0]=NvBootDevType_Spi; DeviceParam[0].SpiFlashParams.ReadCommandTypeFast=0; DeviceParam[0].SpiFlashParams.ClockDivider=12; DeviceParam[0].SpiFlashParams.ClockSource=NvBootSpiClockSource_PIIPOut0;

SDRAM[0].MemoryType=NvBootMemoryType_Ddr2; SDRAM[0].PIIMChargePumpSetupControl=0x00000008;

SDRAM[0].ApbMiscGpXm2CompPadCtrl=0x01f1f008; SDRAM[0].ApbMiscGpXm2VttGenPadCtrl=0x07076600;

BootLoader=u-boot.bin,0x00108000,0x00108000,Complete;

There are some important restrictions:

- □ Do not change any SPITM or SDRAM parameter (forbidden areas marked with red color)
- Do not use a <Space> character, bring all inputs together without a clearance
- Do not use comments

CAUTION

Page 20

KONTRON does not repair a board free of charge if the SPI[™] flash respectively SDRAM parameters are changed.

The third component implies your own bootloader. Maybe in the ASCII equivalent of the Binary Configuration Table the line labeled BootLoader must be changed. The line arguments are defined as follows:

bootloader = <bootloader file name>, <load address>, <entry point>, Complete

The string Complete is a fixed designator (not changeable) but the arguments load address and entry point are bootloader specific. Normally for U-Boot bootloaders both parameters corresponds with the value 0x00108000.

The KONTRON Image Creator package includes the following files:

- IMAGECREATOR.EXE main program
 CONVERT.EXE 32 bit console program (conversion utility)
 SPI-FLASHER.BIN special U-Boot version
- **•** SPI.CFG ASCII equivalent for the Binary Configuration Table

Additional needed file:

□ Your own bootloader the file name must be identical with <bootloader file name>

<u>NOTICE:</u> Do not use a 64 bit Windows[®] environment, the package runs only with Windows[®] XP and 32 bit Windows[®] 7.

5.1 **Program IMAGECREATOR**

After the program start you see the following screen

The Create button generates the required image. The first step loads the ASCII equivalent for the Binary Configuration Table (e.g. SPI.CFG) which includes the name of your own bootloader. This bootloader must exist in the same directory as the main program. The second step loads the SPI-FLASHER program and combines it with the Binary Configuration Table (now a really binary module) and your own bootloader.

If the execution ends successfully the following screen appears

Page 21

The image file disposes of the following structure:

5.2 NVFLASH Download Tool

NVIDIA[®] provides a special tool named NVFLASH to download a bootloader to the target platform. This tool is available for Windows[®] XP, Windows[®] 7 and Linux[®]. The Windows[®] operating system needs an additional USB client driver (also known as APX) however Linux[®] comes with a built-in APX driver.

5.2.1 Windows[®] Operation

- **1** Install the USB client driver:
 - For recovery mode first the recovery button J1400 (if you use two buttons) and then the power button J900 must be pressed until the LEDs go on (for details see the 'KTT20/pITX Users Guide' chapter 'Crisis Management').
 - Windows[®] reports the message 'New hardware found' and the ordinary hardware assistant appears. Now you can install the driver as usual with the CPDWinUSB.inf file. After the installation the device manager has a new entry in the USB path named USB Client Port Driver (CPD).

2 <u>Download the bootloader into SDRAM:</u>

- If you want to develop your own U-Boot version use the command file from the directory 'SDRAM'. Copy your binary U-Boot file (default name: u-boot.bin), the file from the directory 'SDRAM' and all files from the NVFLASH root directory into the same directory.
- **D** Execute the KTT20.bat file. The following screen output must appear:

Nyflash started rcm version 0X20001 System Information: chip name: t20 chip id: 0x20 major: 1 minor: 3 chip sku: 0x8 chip uid: macrovision: disabled hdcp: enabled sbk burned: false dk burned: false boot device: spi operating mode: 3 device config strap: 0 device config fuse: 0 sdram config strap: 0

sending file: ktt20.bct

4080/4080 bytes sent ktt20.bct sent successfully downloading bootloader -- load address: 0x108000 entry point: 0x108000 sending file: u-boot.bin

..... / bytes sent u-boot.bin sent successfully waiting for bootloader to initialize bootloader failed NvError 0x0 command failure: bootloader download failed Press enter to continue:

 Ignore the error messages. The 'nvflash' program expects some additional operations which are never executed. Now U-Boot is starting and you should see the bootloader serial output on your terminal program.

3 <u>Download the bootloader into SPI[™] flash</u>

If you want to flash a new final bootloader version or to repair a damaged bootloader use the command file from the directory 'SPI'. An important prerequisite is an existing image file as output from the 'ImageCreator' tool (default name: spi-flasher.img) or from a Kontron BSP. Copy your image file, the file from the directory 'SPI' and all files from the NVFLASH root directory into the same directory.

Execute the SPI.bat file. The following screen output must appear:

Page 23

Nvflash started rcm version 0X20001 System Information: chip name: t20 chip id: 0x20 major: 1 minor: 3 chip sku: 0x8 chip uid: macrovision: disabled hdcp: enabled sbk burned: false dk burned: false boot device: spi operating mode: 3 device config strap: 0 device config fuse: 0 sdram config strap: 0

sending file: spi.bct

4080/4080 bytes sent spi.bct sent successfully downloading bootloader -- load address: 0x108000 entry point: 0x108000 sending file: spi-flasher.img

..... / bytes sent spi-flasher.img sent successfully waiting for bootloader to initialize bootloader failed NvError 0x0 command failure: bootloader download failed Press enter to continue:

- Ignore the error messages. The 'nvflash' program expects some additional operations which are never executed. Now U-Boot is starting and you should see the bootloader serial output on your terminal program.
- To prevent data loss when switching off the board it is a good solution to control the programming progress over the serial output. You should see as a minimum:

```
SF: Detected SST25VF032B with page size 4096, total 4 MiB
4096 KiB SST25VF032B at 0:0 is now current device
ERASING...
WRITING...
```

5.2.2 Linux[®] Operation

- **1** <u>Download the bootloader into SDRAM:</u>
 - If you want to develop your own U-Boot version use the script file from the directory 'SDRAM'. Copy your binary U-Boot file (default name: u-boot.bin), the file from the directory 'SDRAM' and all files from the NVFLASH root directory into the same directory.

D Execute the 'ktt20.sh' file. The following screen output must appear:

Page 24

Nvflash started rcm version 0X20001 System Information: chip name: t20 chip id: 0x20 major: 1 minor: 3 chip sku: 0x8 chip uid: macrovision: disabled hdcp: enabled sbk burned: false dk burned: false boot device: spi operating mode: 3 device config strap: 0 device config fuse: 0 sdram config strap: 0

sending file: KTT20.bct

4080/4080 bytes sent KTT20.bct sent successfully downloading bootloader -- load address: 0x108000 entry point: 0x108000 sending file: u-boot.bin

..... / bytes sent u-boot.bin sent successfully waiting for bootloader to initialize bootloader failed NvError 0x0 command failure: bootloader download failed

- Ignore the error messages. The 'nvflash' program expects some additional operations which are never executed. Now U-Boot is starting and you should see the bootloader serial output on your terminal program.
- ② Download the bootloader into SPI[™] flash
 - If you want to flash a new final bootloader version or to repair a damaged bootloader use the script file from the directory 'SPI'. An important prerequisite is an existing image file as output from the 'ImageCreator' tool (default name: spi-flasher.img) or from a Kontron BSP. Copy your image file, the file from the directory 'SPI' and all files from the NVFLASH root directory into the same directory.

D Execute the 'spi.sh' file. The following screen output must appear:

Page 25

Nvflash started rcm version 0X20001 System Information: chip name: t20 chip id: 0x20 major: 1 minor: 3 chip sku: 0x8 chip uid: macrovision: disabled hdcp: enabled sbk burned: false dk burned: false boot device: spi operating mode: 3 device config strap: 0 device config fuse: 0 sdram config strap: 0

sending file: SPI.bct

4080/4080 bytes sent SPI.bct sent successfully downloading bootloader -- load address: 0x108000 entry point: 0x108000 sending file: spi-flasher.img

..... / bytes sent spi-flasher.img sent successfully waiting for bootloader to initialize bootloader failed NvError 0x0 command failure: bootloader download failed

- Ignore the error messages. The 'nvflash' program expects some additional operations which are never executed. Now U-Boot is starting and you should see the bootloader serial output on your terminal program.
- To prevent data loss when switching off the board it is a good solution to control the programming progress over the serial output. You should see as a minimum:

SF: Detected SST25VF032B with page size 4096, total 4 MiB 4096 KiB SST25VF032B at 0:0 is now current device ERASING... WRITING...

6 SMSC[®] USB Hub and LAN Controller

The SMSC[®] controller LAN9514 has its own configuration EEPROM. This allows the automatic loading of static configuration data after reset. The EEPROM opens the ability to disable the onchip LAN controller but this option leads to a non-programmable state. This setting makes it impossible to reprogram the EEPROM. It is strongly recommended that the EEPROM content remains unchanged.

CAUTION

KONTRON does not repair a board free of charge if the LAN controller in the configuration EEPROM is disabled.

7 Alternative Linux[®] Distributions

If you want to use the installed U-Boot bootloader and only change the Linux[®] distribution three conditions should be fulfilled

- ☐ format the USB key or microSD[™] card with ext2 or ext3
- □ rename the kernel to uImage
- store the kernel in the root directory

One way to bypass the last two conditions is to change the U-Boot environment settings. The U-Boot command 'printenv' lists all variables, 'setenv' modifies the values and 'saveenv' stores the new environment. Now the default environment settings:

```
baudrate=115200
bootargs=mem=1024M@0M console=ttyS0,115200n8 console=tty0 lp0_vec=0x2000@0x1C406000 root=/dev/sda1 rootwait
bootargs.base=mem=1024M@0M console=ttyS0,115200n8 console=tty0 lp0_vec=0x2000@0x1C406000
bootcmd=run mmc_boot ; run usb_boot ;
bootdelay=3
bootfile=uImage
ethact=sms0
load_did=loady ; writedid ${loadaddr} ${filesize}
loadaddr=0x408000
mmc_boot=run mmc_setup; mmc rescan ${mmcdev}; ext2load mmc ${mmcdev} ${loadaddr} ${bootfile}; bootm ${loadaddr}
mmc_setup=setenv bootargs ${bootargs.base} root=/dev/mmcblk0p1 rootwait
mmcdev=0
nfs_boot=run nfs_setup; usb start; dhcp; bootm ${loadaddr}
nfs_setup=setenv bootargs ${bootargs.base} root=/dev/nfs ip=dhcp
stderr=serial,lcd
stdin=serial
stdout=serial,lcd
usb_boot=run usb_setup; usb start; ext2load usb ${usbdev} ${loadaddr} ${bootfile}; bootm ${loadaddr}
usb_setup=setenv bootargs ${bootargs.base} root=/dev/sda1 rootwait
usbdev=0
```

U-Boot Compilation 8

Kontron Technology does not provide any support for the free U-Boot version.

You can find a suitable compiler without major effort. One option is to use the LinaroTM ARM[®] compiler downloadable from the internet address

http://www.linaro.org/

You need only four command lines to compile the U-Boot sourcecode. For an example:

export PATH=/<compiler path>/arm-none-eabi-gcc-4_6/bin/:\$PATH make distclean CROSS_COMPILE=arm-none-eabimake harmony_config CROSS_COMPILE=arm-none-eabimake all CROSS_COMPILE=arm-none-eabi-

The KTT20/pITX board be based on NVIDIAs[®] 'Harmony' evaluation board. This explains the compiler switch harmony config. The appendant U-Boot sourcecode is downloadable from the internet address

http://git.denx.de/?p=u-boot.git;a=summary

Another possibility:

http://nv-tegra.nvidia.com/gitweb/?p=3rdparty/u-boot.git;a=summary

The directory 'include/configs' contains a really important file named 'harmony.h'. For adaption some changes are necessary.

/*

- * (C) Copyright 2010, 2011
- * NVIDIA Corporation <www.nvidia.com>
- * See file CREDITS for list of people who contributed to this project.
- * This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
- * License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any * later version.
- * This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
- * implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
- * License for more details.
- * You should have received a copy of the GNU General Public License along with this program; if not, write to the
- * Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

*/

#ifndef __CONFIG_H #define ___CONFIG_H

#include <asm/sizes.h> #include "tegra2-common.h" /* High-level configuration options */
#define TEGRA2_SYSMEM "mem=384M@0M nvmem=128M@384M mem=512M@512M"
#define V_PROMPT "Tegra2 (Harmony) # "

•••••

/* Board-specific serial config */
#define CONFIG_SERIAL_MULTI
#define CONFIG_TEGRA2_ENABLE_UARTC
#define CONFIG_SYS_NS16550_COM1

#define CONFIG_TEGRA2_BOARD_STRING #define CONFIG_MACH_TYPE #define CONFIG_SYS_BOARD_ODMDATA #define CONFIG_BOARD_EARLY_INIT_F NV_PA_APB_UARTC_BASE

"NVIDIA Harmony" MACH_TYPE_HARMONY 0x300d8011 /* lp1, 1GB */

/* SD/MMC */ #define CONFIG_MMC #define CONFIG_GENERIC_MMC #define CONFIG_TEGRA2_MMC #define CONFIG_CMD_MMC

#define CONFIG_DOS_PARTITION
#define CONFIG_EFI_PARTITION
#define CONFIG_CMD_EXT2
#define CONFIG_CMD_FAT

/* Environment not stored */ #define CONFIG_ENV_IS_NOWHERE #endif /* __CONFIG_H */

8.1 Hardware Components Compatibility

Between the KTT20/pITX and the 'Harmony' evaluation board there are following conformities/differences:

Component	KTT20/pITX vs. 'Harmony' Evalboard	
SDRAM	Compatible	
NAND	Compatible	
SPI [™] Flash	Compatible	
PMU	Compatible	
LAN	Compatible	
DVI®	DVI [®] vs. HDMI [®]	
CRT	Compatible	
LVDS	Compatible	
USB Client	Compatible	
USB	Nearly compatible	
microSD [™] (MMC)	Compatible	
Audio	Compatible	
PCI Express [®]	Compatible	
I ² C [™]	Not compatible	
UARTs	Not compatible	
GPIOs	Not compatible	
Temperature Sensor	Compatible	

8.2 **GPIO Declarations**

The directory 'drivers/gpio' contains a module named 'tegra2_gpio.c'. It disposes of all needed routines to declare a GPIO as input or output respectively to read or write a value. An overview:

int gpio_request	$\ensuremath{{\prime}}\xspace$ // Configure as GPIO (only in older versions)
int gpio_direction_input	// Set GPIO as input
int gpio_direction_output	// Set GPIO as output
int gpio_get_value	// Read input value
void gpio_set_value	// Set output value

Example (symbolic names see 'arch/arm/include/asm/arch-tegra2/gpio.h'):

// gpio_request is a function from older U-Boot versi	ons - possibly not necessary
ret = gpio_request (GPIO_PT1, NULL);	// define GPIO33 as GPIO, also labeled T.01
if (ret) {	
do something;	// Error
}	
<pre>gpio_direction_input (GPIO_PT1);</pre>	// Set GPIO as input
ret = gpio_get_value (GPIO_PT1);	// Read value, result is always Bit 0

```
// gpio_request is a function from older U-Boot versions - possibly not necessary
ret = gpio_request (GPIO_PD6, NULL); // define GPIO30 as GPIO, also labeled D.06
if (ret) {
    do something; // Error
}
gpio_direction_output (GPIO_PD6, 0); // Set GPIO as output with low level
udelay (1000); // Wait 1 ms
gpio_set_value (GPIO_PD6, 1); // Set high level
```

8.3 UART Declarations

For an extensive usage of UARTs the module 'board.c' in the directory 'board/nvidia/common' must be changed. For example:

```
enum {
   // UARTs which we can enable
   UARTA = 1 << 0,
   UARTB = 1 << 1,
   UARTC = 1 << 2,
   UARTD = 1 << 3,
};
static void clock_init_uart (int uart_ids)
{
   if (uart_ids & UARTA)
       enable_uart (PERIPH_ID_UART1);
   if (uart_ids & UARTB)
       enable_uart (PERIPH_ID_UART2);
   if (uart_ids & UARTC)
       enable_uart (PERIPH_ID_UART3);
}
static void pin_mux_uart (int uart_ids)
{
   if (uart_ids & UARTA) {
       pinmux_set_func (PINGRP_UAA, PMUX_FUNC_UARTA);
       pinmux_tristate_disable (PINGRP_UAA);
   }
   if (uart_ids & UARTB) {
       pinmux_set_func (PINGRP_UAD, PMUX_FUNC_IRDA);
       pinmux_set_func (PINGRP_IRRX, PMUX_FUNC_UARTB);
       pinmux_set_func (PINGRP_IRTX, PMUX_FUNC_UARTB);
       pinmux_tristate_disable (PINGRP_UAD);
       pinmux_tristate_disable (PINGRP_IRRX);
       pinmux_tristate_disable (PINGRP_IRTX);
   }
   if (uart_ids & UARTC) {
       pinmux_set_func (PINGRP_UCA, PMUX_FUNC_UARTC);
       pinmux_tristate_disable (PINGRP_UCA);
       pinmux_set_func (PINGRP_UCB, PMUX_FUNC_UARTC);
       pinmux_tristate_disable (PINGRP_UCB);
```

}

```
#Ifdef CONFIG_BOARD_EARLY_INIT_F
int board_early_init_f (void)
{
    int uart_ids = 0; // bit mask of which UART ids to enable
#ifdef CONFIG_TEGRA2_ENABLE_UARTA
    uart_ids |= UARTA;
#endif
#ifdef CONFIG_TEGRA2_ENABLE_UARTB
    uart_ids |= UARTB;
#endif
#ifdef CONFIG_TEGRA2_ENABLE_UARTC
    uart_ids |= UARTC;
#endif
```

Add some entries to 'include/configs/harmony.h. For example:

#define CONFIG_TEGRA2_ENABLE_UARTA
#define CONFIG_TEGRA2_ENABLE_UARTB
#define CONFIG_TEGRA2_ENABLE_UARTC
#define CONFIG_SYS_NS16550_COM1
#define CONFIG_SYS_NS16550_COM2
#define CONFIG_SYS_NS16550_COM3

NV_PA_APB_UARTC_BASE NV_PA_APB_UARTA_BASE NV_PA_APB_UARTB_BASE

8.4 Linux[®] Environment on Windows[®]

If you want to implement a Linux[®] environment on a Windows[®] operating system the ORACLE[®] VirtualBox[®] is a good solution. For further information see

https://www.virtualbox.org/

VirtualBox[®] supports all USB interfaces from the host and configures the guest operating system with a virtual USB controller. Likely there are some exceptions, for example the access to the Client Port Driver (CPD).

9 Linux[®] BSP

9.1 User Login Arguments

For both, serial remote system or normal display manager login, the arguments are the same. Serial remote system (necessary input with green color):

ktt20 login: ktt20

Password: ktt20

Display manager login (necessary input with green color):

ktt20
KTT20 System User Password: ktt20
GNOME Classic V Cancel Unlock

Note: there is no 'root' password defined. If you need root privileges use 'sudo' and the user password.

9.2 Video Decoding

Hardware accelerated video decoding requires the GStreamer/OpenMAX framework and a special NVIDIA[®] nvgstplayer application or gst-launch as a command line tool. KONTRON Technology A/S does not know another programs which can play a H.264 main profile video stream (720p) without dropouts (e.g. Totem Movie Player, MPlayer or VLC).

Video Format	Profile / Level	Max. Resolution / Frame Rate	Max. Throughput	Comment
DivX 4/5/6	1080p HD	1920 x 1080 / 30 fps	10 Mbps	
Xvid	Highdef	1920 x 1080 / 30 fps	10 Mbps	
MPEG-4	Advanced Simple / L4	1920 x 1080 / 30 fps	10 Mbps	
H.264	Baseline (BP) / L4	1920 x 1080 / 30 fps	10 Mbps	
H.264	Main (MP) / L3.1	1280 x 720 / 30 fps	4 Mbps	CAVLC
H.264	Main (MP) / L3.1	1280 x 720 / 30 fps	4 Mbps	CABAC, CAVLC
H.264	High (HiP) / L3.1	1280 x 720 / 30 fps	4 Mbps	CAVLC
H.264	High (HiP) / L3.1	1280 x 720 / 30 fps	4 Mbps	CABAC, CAVLC

The following table gives an overview about the limitations:

Please note that the maximal throughput data are peak values not average values. You may need to reencode your videos with parameters above to get smooth video output.

ATTENTION

The VC1 video codec and AAC audio codec are not supported (for AAC non-accelerated software decoding can be used). Exception: The gst-launch tool can handle AAC audio streams.

Only three methods ('sinks' in gstreamer terminology) are supported:

- nv_gl_eglimagesink or nvxvimagesink (DVI[®] monitor)
- nv_omx_videosink (LVDS panel)

The operating system contains some installed packages

- □ libgstreamer0.10-0
- **g**nome-media
- but not the 'gstreamer-tools' (necessary for usage of 'gst-launch'). Add this package with

(sudo) apt-get install gstreamer0.10-tools

You can get more information with the command line instructions

gst-inspect-0.10 | grep sink gst-inspect-0.10 | grep decode

<u>Note</u>: The gst-launch player supports video files with AAC audio content (e.g. big_buck_bunny_....mov).

Another command line tool named <u>gstreamer-properties</u> allows the video and audio configuration for applications which uses the gstreamer interface (e.g. Totem Movie Player).

9.2.1 Command Line Examples

For smooth video output you must pass several arguments otherwise the program generates dropouts.

Playing H.264 video on a DVI[®] monitor:

nvgstplayer -i <filename> --svs nv_gl_eglimagesink --sas faad

- Playing DivX video with MP3 audio stream on a LVDS panel: nvgstplayer -i <*filename*> --svs nv_omx_videosink
- Playing H.264 video with AAC audio stream on a DVI[®] monitor: gst-launch-0.10 filesrc location = <*filename*> ! qtdemux name=q ! queue ! nv_omx_h264dec ! nvxvimagesink q. ! queue ! faad ! alsasink
- Playing H.264 video with AAC audio stream on a LVDS panel: gst-launch-0.10 filesrc location = <*filename*> ! qtdemux name=q ! queue ! nv_omx_h264dec ! nv_omx_videosink q. ! queue ! faad ! alsasink

You can create a shell script for example 'video.sh':

#!/bin/sh

gst-launch-0.10 filesrc location=\$1 ! qtdemux name=q ! queue ! nv_omx_h264dec ! nvxvimagesink q. ! queue ! faad ! alsasink and call it with ./video.sh <*filename>*

9.2.2 Reencoding Examples

With the ffmpeg tool you can reencode video files which do not comply the criteria listed above.

Create H.264 baseline profile, avg bitrate 15 Mbps, peak bitrate 20 Mbps:

ffmpeg -y -i ./video.mov -vcodec libx264 -profile baseline -b 15M-maxrate 20M -bufsize 1830k -acodec copy ./video_h264_max20_aver15.mov

Create Xvid, avg bitrate 8 Mbps, peak bitrate 10 Mbps:

ffmpeg -y -i ./video.mov -vcodec mpeg4 -vtag xvid -b 8M -maxrate 10M-bufsize 1830k -acodec copy ./video_xvid_max10_aver8.avi

9.3 Audio Settings

If you have trouble with audio input/output please check the 'alsamixer' settings. Examples with the command line tool 'amixer':

- □ For an overview type amixer contents
- □ To change a value type e.g. amixer cset numid=46 on

You can find some audio files in the directory usr/share/sounds/.... Play these files with the 'aplay' tool, for example aplay ring.wav.

The following table gives an indication to solve the problem(s).

Control	Name	Value
1	Left Input PGA Switch	off
2	Left Input PGA Volume	15
3	Left Input PGA Common Mode Switch	off
4	Right Input PGA Switch	off
5	Right Input PGA Volume	15
6	Right Input PGA Common Mode Switch	off
7	ADC OSR	High performance
8	HPF Switch	off
9	HPF Mode	Hi-fi
10	DRC Switch	off
11	DRC Compressor Slope RO	1/16
12	DRC Compressor Slope R1	1
13	DRC Compressor Threshold Volume	124
14	DRC Volume	15
15	DRC Minimum Gain Volume	0
16	DRC Maximum Gain Volume	0
17	DRC Attack Rate	1.45ms
18	DRC Decay Rate	743ms
19	DRC FF Delay	9 samples
20	DRC Anticlip Switch	on
21	DRC QR Switch	on
22	DRC QR Threshold Volume	2

23	DRC QR Decay Rate	0.725ms
24	DRC Smoothing Switch	on
25	DRC Smoothing Hysteresis Switch	on
26	DRC Smoothing Threshold	Medium
27	DRC Startup Volume	6
28	Digital Capture Volume	<both> 60</both>
29	ADC Companding Mode	ulaw
30	ADC Companding Switch	off
31	Digital Sidetone Volume	<both> 0</both>
32	DAC OSR	Low power
33	Digital Playback Volume	<both> 120</both>
34	DAC Soft Mute Rate	Fast (fs/2)
35	DAC Mute Mode	Soft
36	DAC Mono Switch	off
37	DAC Companding Mode	ulaw
38	DAC Companding Switch	off
39	Playback Deemphasis Switch	off
40	Headphone Switch	<both> on</both>
41	Headphone ZC Switch	<both> off</both>
42	Headphone Volume	<both>0</both>
43	Line Out Switch	<both> on</both>
44	Line Out ZC Switch	<both> off</both>
45	Line Out Volume	<both>45</both>
46	Speaker Switch	<both> on</both>
47	Speaker ZC Switch	<both> off</both>
48	Speaker Volume	<both>45</both>
49	Right Speaker Mixer DACL Switch	on
50	Right Speaker Mixer DACR Switch	on
51	Right Speaker Mixer Left Bypass Switch	off
52	Right Speaker Mixer Right Bypass Switch	off
53	Left Speaker Mixer DACL Switch	on
54	Left Speaker Mixer DACR Switch	on
55	Left Speaker Mixer Left Bypass Switch	off
56	Left Speaker Mixer Right Bypass Switch	off
57	Right Output Mixer DACL Switch	on
58	Right Output Mixer DACR Switch	on
59	Right Output Mixer Left Bypass Switch	off
60	Right Output Mixer Right Bypass Switch	off
61	Left Output Mixer DACL Switch	on
62	Left Output Mixer DACR Switch	on
63	Left Output Mixer Left Bypass Switch	off
64	Left Output Mixer Right Bypass Switch	off
65	Right Playback Mux	Right
66	Left Playback Mux	Left

67	DACR Sidetone	None
68	DACL Sidetone	None
69	Right Capture Mux	Right
70	Left Capture Mux	Left
71	ADC Input	ADC
72	Right Input Mode Mux	Single-Ended
73	Right Input Inverting Mux	IN1R
74	Right Input Mux	IN1R
75	Left Input Mode Mux	Single-Ended
76	Left Input Inverting Mux	IN1L
77	Left Input Mux	IN1L
78	Int Spk Switch	on

9.4 PCI Express[®] Interface

Some mini PCI Express[®] cards cause a malfunction (e.g. card not detected or interrupt assignment not possible). One way to bypass this issue is to decrease the clock frequency. For this purpose you can expand the U-Boot environment with a new kernel argument low_pcie_freq.

Observe the following procedure:

- Interrupt the kernel boot process in U-Boot.
- Type editenv bootargs.base and press Enter.
- □ Add a space and then the new argument. Press Enter.
- **Type saveenv and press Enter.**

Example:

```
Kontron KTT20 # editenv bootargs.base
edit: mem=1024M@0M console=ttyS0,115200n8 console=tty0 lp0_vec=0x2000@0x1C406000 low_pcie_freq
Kontron KTT20 # saveenv
Saving Environment to SPI Flash...
SF: Detected SST25VF032B with page size 4096, total 4 MiB
Erasing SPI flash...Writing to SPI flash...done
Kontron KTT20 #
```

In the same way you can remove this new argument with the backspace key.

9.5 CPU Frequency Management

Linux[®] uses as default the frequency setting Ondemand which is not optimal for some applications (e.g. video decoding). The Linux[®] applet indicator-cpufreq provides four different CPU frequency modes:

Conservative, Ondemand, Powersave and Performance.

Download this tool with the following terminal commands:

(sudo) add-apt-repository ppa:artfwo/ppa

(sudo) apt-get update

(sudo) apt-get install indicator-cpufreq

After download you should reboot the operating system.

9.6 **KEAPI Interface**

For test and demonstration purposes you can find a GUI tool with the menu entries Accessories - Files - File System in the directory usr/bin. Double-click on the keapi-gui script, click on the button Run and after password input the following screen output appears:

KEAPI-GUI 1.0: Kontron KTT20/pITX -							
						🔇 ko	ntron
System Information	CPU Thermal Control	CPU Perf	ormance	Battery	Sensors	I2C/SMBus	GPI0 🜗
General Information		<u> </u>	Disk Driv	es			<u> </u>
Board Name: Manufacturer: IP Address: CPU: Memory Size: Battery State: System Up-Time: Boot Counter:	Kontron KTT20/pITX Not available ARMv7 Processor rev 0 (v 849 MB No battery 20 min 58 sec 28	71)	i sda M Si Si	odel: Kingsto erial number ze: 7.39 GB	on DT 100 G2 :		
Board Information			Partition	s			
CPU Information			Network	Devices			
Memory Information			PCI Devic	es			
			System P	Power State	•		

The next two pictures demonstrate some features.

	KEAPI-GUI 1.0:	Kontron KTT20	/pITX -			_ 🗆 ×
					🌔 ko	ntron
System Information CP	U Thermal Control	CPU Performance	Battery	Sensors	I2C/SMBus	GPI0 ()
Performance type High performance Power save On demand Conservative 100 %	Current CPU spe	ed: 912 MHz	High performation to the highes Powersave typ lowest freque On demand typ depending on Conservative CPU depending differs in be increases and than jumping any load on t suitable in a	ance type se st frequency be sets the ency. be sets the the current type, like g on the cur ehaviour in d decreases to max spee che CPU. Thi a battery po	ts the CPU sta CPU statically usage. On demand, set rent usage. If that it gracet the CPU speed d the moment 1 s behaviour is wered environ	atically y to the ly ts the t fully rather there is s more ment.
Connect						

KEAPI-	GUI 1.0: Konti	ron KTT20/pITX -				_ 🗆 ×
					🛞 ko	ntron
System Information CPU T	hermal Control	CPU Performance	Battery	Sensors	I2C/SMBus	GPIO 🕨
SYS-Temp 0 20 40 60 80 CPU-Temp 0 20 40 60 80	Voltag	e [V]		Fans speed	[rpm]	
Connect						

For the I^2C^{TM} part some restrictions are valid:

- Do not access board devices (e.g. temperature sensor this device has an own interface). Especially this part should be used for external components on the digital I/O (GPIO) or mini PCI Express[®] connector.
- Some datasheets present the device address as a shifted value (e.g. EEPROM address = 0xA0). Use instead the unshifted value (e.g. real EEPROM address = 0x50).
- Bus 1 allows access to the DVI[®] DDC lines. Do not overwrite the EDID EEPROM.

I ² C [™] bus assignment:	Bus 0 ⇔ mini PCI Express [®] connector	Bus 1 ⇔ DVI [®] DDC lines
	Bus 2 ⇔ Digital I/0 connector	Bus 3 ⇒ Reserved

	KEAPI-GUI 1.0:	: Kontron KTT20/pITX -
		🚳 kontron
System Information	CPU Thermal Control	CPU Performance Battery Sensors I2C/SMBus GPIO
Bus number 12C - 0 • Protocol type SMBus © 12C	I2C commands Read Write	Communication Slave address Ox50 Memory address Ox00 X Use address Bytes to read 8 Read data Do it!
Connect		

For digital I/O pin assignment see the 'KTT2O/pITX Users Guide' chapter 'Digital I/O Interface'.

	к	EAPI-G	JI 1.0	: Kor	ntron K	(TT20)	рІТХ	-					_	×
												(k	ontr	on
System Information	CPU The	rmal Con	trol	CPU	Perform	nance	Batt	ery	Sens	ors	I2C/	SMBus	GPIO	
General purpose I	O pins —													
GPIO port range	0 - 7	-												
Pin number	0	1		2	:	3	4		5		6		7	
Direction	Ουτ	IN		IN		N	IN		IN		IN		IN	
Level	0	0		0		0	0		0		0		0	
Connect														

The display part is only available if you use a LVDS panel.

		KEAPI-	GUI 1.0: Kontron	ктт20/рГ	тх -			- •	×
							🛞 ko	ntro	n
Information	CPU Thermal	Control	CPU Performance	Battery	Sensors	I2C/SMBus	GPIO	Misc	Þ
Display Brightne	ess Control	- WatchD T	rimeout: 10 s Start Trigger Stop		EPROM Stor Storage Nr. (Content (10 Write data Offset 0 Data	age 0 v 024 bytes)	Refresh Write		
Connect									

9.6.1 KEAPI Command Line Tools

In the same directory where the GUI tool is located you can find the following command line tools (for help screen type the command without arguments):

<u>Note</u>: some modules are pointless (do not use the grayed out tools - they are only available for compatibility purposes).

keapi-battery	
keapi-cpu	
keapi-disk	
keapi-display	Only LVDS panel support
keapi-eeprom	
keapi-fan	
keapi-general	
keapi-gpio	
keapi-i2c	
keapi-memory	
keapi-netdev	Network controller support
keapi-pcidev	PCI Express [®] card support
keapi-smbus	Same functionality as keapi-i2c
keapi-temp	
keapi-voltage	
keapi-watchdog	

For application programming see the KEAPI interface documentation (KEAPI_spec_v....pdf).

10 Android[™] BSP

10.1 Graphics Interface

10.1.1 DVI[®] Monitor

The Android[™] graphic driver does not offer full EDID support. In most cases two supported resolutions (SXGA and Full-HD) are enough. You need to add the entry 'persist.tegra.hdmi.resolution' in the system file 'build.prop', detectable in the directory /system. The driver accepts following values:

Vga, 480p, 576p, 720p, SXGA and 1080p

Example for Full-HD:

persist.tegra.hdmi.resolution=1080p

10.1.2 LCD Panel

There are no restrictions regarding the supported resolutions. With DisplayID all panels with single channel can be attached.

10.2 Video Decoding

The integrated video player in the operating system allows hardware accelerated video decoding but this player offers only some video formats. Another good choice represents the MX Video Player. The following table gives an overview about the limitations:

Video Format	Profile / Level	Max. Resolution / Frame Rate	Max. Throughput	Comment
DivX 4/5/6	1080p HD	1920 x 1080 / 30 fps	10 Mbps	
Xvid	Highdef	1920 x 1080 / 30 fps	10 Mbps	
MPEG-4	Advanced Simple / L4	1920 x 1080 / 30 fps	10 Mbps	
H.264	Baseline (BP) / L4	1920 x 1080 / 30 fps	10 Mbps	
H.264	Main (MP) / L3.1	1280 x 720 / 30 fps	4 Mbps	CAVLC
H.264	Main (MP) / L3.1	1280 x 720 / 30 fps	4 Mbps	CABAC, CAVLC
H.264	High (HiP) / L3.1	1280 x 720 / 30 fps	4 Mbps	CAVLC
H.264	High (HiP) / L3.1	1280 x 720 / 30 fps	4 Mbps	CABAC, CAVLC

Please note that the maximal throughput data are peak values not average values. You may need to reencode your videos with parameters above to get smooth video output.

ATTENTION

The VC1 video codec is not supported

10.3 Display Density

In the system file '/system/build.prop' the entry 'ro.sf.lcd_density' can change the density on both graphic units (DVI[®] and LCD panel) for a better look. The lower the value (e.g. 180, 160 or 130), the higher density and smaller font your screen will have but it is possible that the navigation bar disappears.

10.4 GPIOs, Temperatures, Backlight and Bootcounter

The Android[™] BSP does not support the KEAPI interface. Some special functions are realized with the sysfs in-memory filesystem which allows the kernel to export information to a user space. All following examples can be executed with the serial remote connection (e.g. with TeraTerm on a desktop PC).

10.4.1 GPIOs

For correlation between GPIO numbers and physical pins refer the 'KTT20/pITX Users Guide' chapter 'Digital I/O Interface'.

* Please use the export function before you access a GPIO pin.

echo *<gpio num> >/sys/class/gpio/export* Example for GPI016:

echo 16 >/sys/class/gpio/export

```
Check the GPIO pin direction:
           cat /sys/class/gpio/gpio <gpio num>/direction
   Example for GPI016:
           cat /sys/class/gpio/gpio16/direction
Set the GPIO pin direction:
           echo in >/sys/class/gpio/gpio<gpio num>/direction
                                                                     set direction to input
           echo out >/sys/class/gpio/gpio<gpio num>/direction
                                                                     set direction to output
   Example for GPI016:
           echo in >/sys/class/gpio/gpio16/direction
           echo out >/sys/class/gpio/gpio16/direction
Get an input value:
           cat /sys/class/gpio/gpio <gpio num>/value
   Example for GPI016:
           cat /sys/class/gpio/gpio16/value
  Set an output value:
           echo -n 0 >/sys/class/gpio/gpio <gpio num>/value
                                                                     set output to low level
           echo -n 1 >/sys/class/gpio/gpio <gpio num>/value
                                                                     set output to high level
   Example for GPI016:
           echo -n 0 >/sys/class/gpio/gpio16/value
           echo -n 1 >/sys/class/gpio/gpio16/value
```

Release the GPIO pin:

echo <*gpio num>* >/sys/class/gpio/unexport Example for GPI016: echo 16 >/sys/class/gpio/unexport

10.4.2 Temperatures

The board provides two temperatures: CPU (*temp2*) and sensor onchip (*temp1*). For temperature display in °C divide the returned values by 1000.

- Get the sensor onchip temperature: cat /sys/class/hwmon/hwmon0/device/temp1_input
- Get the CPU temperature: cat /sys/class/hwmon/hwmon0/device/temp2_input

10.4.3 Backlight

The backlight functionality is only available if you have activated the LCD panel support in U-Boot.

- Get the brightness value: cat /sys/class/backlight/pwm-backlight/brightness
- Set a new brightness value (range: 0 to 255): echo <value> >/sys/class/backlight/pwm-backlight/brightness Example:

echo 64 >/sys/class/backlight/pwm-backlight/brightness

10.4.4 Bootcounter

It can be useful to read the bootcounter.

Get the bootcounter value:

cat /sys/bus/i2c/devices/2-0050/bootcounter

11 Windows[®] Embedded Compact 7 (WEC7) BSP

11.1 U-Boot Settings

The default environment settings intend to load a Linux[®] or AndroidTM image from an ext2/ext3 filesystem and not from a FAT/FAT32 partition. Two environment arguments have to be changed: bootfile and mmc_boot or usb_boot. Remove the boot device with the operating system or skip the autoboot operation with any key. Then type 'printenv' and you see the default arguments:

bootfile=uImage

mmc_boot=run mmc_setup; mmc rescan \${mmcdev}; ext2load mmc \${mmcdev} \${loadaddr} \${bootfile}; bootm \${loadaddr} usb_boot=run usb_setup; usb start; ext2load usb \${usbdev} \${loadaddr} \${bootfile}; bootm \${loadaddr}

After the edition you should check the modifications with 'printenv' but as the most important action U-Boot requires the storage of the environment arguments in the SPI^{TM} flash with 'saveenv'. The result screen looks as follows:

Saving Environment to SPI Flash... SF: Detected SST25VF032B with page size 4096, total 4 MiB Erasing SPI flash...Writing to SPI flash...done

11.1.1 Boot from microSD Card

Change the arguments with 'editenv':

11.1.2 Boot from USB key

Change the arguments with 'editenv':

bootfile=nk.nb0
usb_boot=dcache off; run usb_setup; usb start; fatload usb \${usbdev} \${loadaddr} \${bootfile}; go \${loadaddr}

11.2 Video Decoding

The integrated video player in the operating system allows hardware accelerated video decoding. The following table gives an overview about the limitations:

Video Format	Profile / Level	Max. Resolution / Frame Rate	Max. Throughput	Comment
DivX 4/5/6	1080p HD	1920 x 1080 / 30 fps	10 Mbps	
Xvid	Highdef	1920 x 1080 / 30 fps	10 Mbps	
MPEG-4	Advanced Simple / L4	1920 x 1080 / 30 fps	10 Mbps	
H.264	Baseline (BP) / L4	1920 x 1080 / 30 fps	10 Mbps	
H.264	Main (MP) / L3.1	1280 x 720 / 30 fps	4 Mbps	CAVLC
H.264	Main (MP) / L3.1	1280 x 720 / 30 fps	4 Mbps	CABAC, CAVLC
H.264	High (HiP) / L3.1	1280 x 720 / 30 fps	4 Mbps	CAVLC
H.264	High (HiP) / L3.1	1280 x 720 / 30 fps	4 Mbps	CABAC, CAVLC

Please note that the maximal throughput data are peak values not average values. You may need to reencode your videos with parameters above to get smooth video output.

11.3 Raster Font Support

If you enable the Raster Fonts Support some applications cause an exception. These include the Internet Explorer, the Music Player and the Video Player. If possible do not enable this setting. Remark: For Video Player disable also the setting Window Compositor.

11.4 Graphics Interface

You cannot use the U-Boot Setup settings to configure the DVI[®] or the LCD panel output. Only some entries in 'platform.reg' define for example the boot display or the resolution.

11.4.1 DVI[®] Monitor

The best way to apply the DVI[®] monitor consists in the usage of EDID data. Example:

```
IF BSP_NV_DISPLAY

... some settings ...

"MainPanelBpp"=dword:20

"DviHotplugBehavior"=dword:1

"DesktopWidth"=dword:0

"DesktopHeight"=dword:0

"EnableEdidMode"=dword:1

"DesktopScaleMode"=dword:2

"DefaultDdrawCloneMode"=dword:0

"AlwaysVSyncExternal"=dword:1

"FilterScaledDesktops"=dword:1

"EnableDestAlpha"=dword:1

"UseStaticResolutionList"=dword:0

ENDIF
```

11.4.2 LCD Panel

For a LCD panel you have to define the entries DesktopWidth and DesktopHeight. Only some fixed resolutions (single channel) are supported. Example:

```
VGA, WVGA, SVGA and XGA
```

```
IF BSP_NV_DISPLAY
... some settings ...
   "MainPanelBpp"=dword:20
   "DviHotplugBehavior"=dword:1
; This registry will decide the desktop resolution
; * 800x600 (0x320 x 0x258)
   "DesktopWidth"=dword:320
   "DesktopHeight"=dword:258
   "EnableEdidMode"=dword:0
   "DesktopScaleMode"=dword:2
   "DefaultDdrawCloneMode"=dword:0
   "AlwaysVSyncExternal"=dword:1
   "FilterScaledDesktops"=dword:1
   "EnableDestAlpha"=dword:1
   "UseStaticResolutionList"=dword:0
ENDIF
```

11.5 $I^2 C^{TM}$ Support

Do not use the BSP $I^2 C^{TM}$ example. The connector J2000 involves the camera interface and likely this connector is not assembled in the future.

11.6 Watchdog Example

```
#include <windows.h>
#include <pkfuncs.h>
#define WDT_CNT_MAX
                                10
                                                         // 1 second
#define WDT CNT TIME
                                1000
#define WDT_CNT_ABORT
                                20
int _tmain (int argc, TCHAR *argv[])
{
   HANDLE hWdt;
   LPCWSTR pszWdtName = L"wdtdemo";
   DWORD dwWdtPeriod = 5000;
                                                         // 5 seconds
   DWORD dwWdtWait = 1000;
                                                         // 1 second
   DWORD dwCount;
   wprintf (TEXT ("Start watchdog demo\r\n"));
   hWdt = CreateWatchDogTimer (pszWdtName, dwWdtPeriod, dwWdtWait, WDOG_RESET_DEVICE, 0, 0);
   if (! hWdt)
   {
     wprintf (TEXT ("Error: invalid handle\r\n"));
     return 1;
   }
   if (GetLastError() == ERROR_ALREADY_EXISTS)
   {
     wprintf (TEXT ("Error: watchdog name already exists\r\n"));
     return FALSE;
   }
   if (! StartWatchDogTimer (hWdt, 0))
   {
     wprintf (TEXT ("Error: StartWatchDogTimer failed\r\n"));
     CloseHandle (hWdt);
     return FALSE;
   }
   dwCount = 0;
   while ((dwCount++) < WDT_CNT_MAX)</pre>
   {
     wprintf (TEXT ("Refreshing watchdog timer. Count = %d of %d\r\n"), dwCount, WDT_CNT_MAX);
     if (! RefreshWatchDogTimer (hWdt, 0))
     {
       wprintf (TEXT("Error: RefreshWatchDogTimer failed\r\n"));
       CloseHandle (hWdt);
       return FALSE;
     }
```

```
Sleep (WDT_CNT_TIME);
}
wprintf (TEXT ("Watchdog timer refresh stopped !\r\n"));
dwCount = 0;
while ((dwCount++) < WDT_CNT_ABORT)
{
    wprintf (TEXT ("Timeout count = %d\r\n"), dwCount);
    Sleep (WDT_CNT_TIME);
}
wprintf (TEXT ("Error: watchdog timeout failed\r\n"));
CloseHandle (hWdt);
return FALSE;</pre>
```

}

11.7 GPIO Examples

Defines PORT_C as output and sets each pin to low level (alternative to high level):

```
#include <windows.h>
#include <winioctl.h>
#include <tchar.h>
// define IO controls
#define IOCTL_GPIO_CLEAR_OUTPUT \
        CTL_CODE (FILE_DEVICE_USERDRIVER, 3300, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define IOCTL_GPIO_SET_OUTPUT \
         CTL_CODE (FILE_DEVICE_USERDRIVER, 3301, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define IOCTL_GPIO_CONFIG_OUTPUT \
        CTL_CODE (FILE_DEVICE_USERDRIVER, 3303, METHOD_BUFFERED, FILE_ANY_ACCESS)
// define ports
#define GPIO_PORT_A
                                0
#define GPIO PORT B
                                1
#define GPIO_PORT_C
                                2
#define GPIO_PORT_D
                                3
#define GPIO PORT E
                                4
#define GPIO_PORT_F
                                5
// index conversion macros
#define GET_INDEX(port, pin) ((port << 3) | (0x07 & pin))</pre>
int _tmain (int argc, TCHAR *argv[])
{
   HANDLE hDev;
   UINT i;
   UCHAR ucBuffIn, ucBuffOut;
   // Create handle
   hDev = CreateFile (L"PIO1:", GENERIC_READ | GENERIC_WRITE, 0, NULL, OPEN_EXISTING, 0, NULL);
   if (hDev != INVALID_HANDLE_VALUE)
   {
     for (i = 0; i < 8; i++)
     {
       ucBuffIn = GET_INDEX (GPIO_PORT_C, i);
       if (! DeviceIoControl (hDev, IOCTL_GPIO_CONFIG_OUTPUT,
                   &ucBuffIn, sizeof (UCHAR), &ucBuffOut, sizeof (UCHAR),
                   NULL, NULL))
        wprintf (TEXT ("Error: DeviceIoControl_CONFIG_OUTPUT failed\r\n"));
       // use IOCTL_GPIO_CLEAR_OUTPUT or IOCTL_GPIO_SET_OUTPUT
       if (! DeviceIoControl (hDev, IOCTL_GPIO_CLEAR_OUTPUT,
                   &ucBuffIn, sizeof (UCHAR), &ucBuffOut, sizeof (UCHAR),
                   NULL, NULL))
        wprintf (TEXT ("Error: DeviceIoControl_CLEAR_SET_OUTPUT failed\r\n"));
     }
   }
}
```

Defines PORT_C as input and reads each pin: #include <windows.h> #include <winioctl.h> #include <tchar.h> // define IO controls #define IOCTL_GPIO_GET_INPUT \ CTL_CODE (FILE_DEVICE_USERDRIVER, 3302, METHOD_BUFFERED, FILE_ANY_ACCESS) #define IOCTL GPIO CONFIG INPUT \ CTL_CODE (FILE_DEVICE_USERDRIVER, 3304, METHOD_BUFFERED, FILE_ANY_ACCESS) // define ports #define GPIO_PORT_A 0 #define GPIO_PORT_B 1 2 #define GPIO_PORT_C #define GPIO_PORT_D 3 #define GPIO_PORT_E 4 #define GPIO_PORT_F 5 // index conversion macros #define GET_INDEX(port, pin) ((port << 3) | (0x07 & pin))</pre> int _tmain (int argc, TCHAR *argv[]) { HANDLE hDev; UINT i; UCHAR ucBuffIn, ucBuffOut, val = 0; // Create handle hDev = CreateFile (L"PIO1:", GENERIC_READ | GENERIC_WRITE, 0, NULL, OPEN_EXISTING, 0, NULL); if (hDev != INVALID_HANDLE_VALUE) { for (i = 7; i > = 0; i--){ ucBuffIn = GET_INDEX (GPIO_PORT_C, i); if (! DeviceIoControl (hDev, IOCTL_GPIO_CONFIG_INPUT, &ucBuffIn, sizeof (UCHAR), &ucBuffOut, sizeof (UCHAR), NULL, NULL)) wprintf (TEXT ("Error: DeviceIoControl_CONFIG_INPUT failed\r\n")); if (! DeviceIoControl (hDev, IOCTL GPIO GET INPUT, &ucBuffIn, sizeof (UCHAR), &ucBuffOut, sizeof (UCHAR), NULL, NULL)) wprintf (TEXT ("Error: DeviceIoControl_GET_INPUT failed\r\n")); val |= (ucBuffOut & 0x01); if (i > 0)val <<= 1;} wprintf (TEXT ("Input value = 0x%02X\r\n"), val); Sleep (2000); }

```
}
```

Appendix A: Reference Documents

KONTRON Technology A/S can't guarantee the availability of internet addresses.

Document	Internet Address
NVIDIA [®] Development	http://developer.nvidia.com/tools/Development
Tegra [®] 2 Technical Reference Manual	http://developer.nvidia.com/tegra-2-technical-reference-manual
Linux [®] for Tegra [®]	http://developer.nvidia.com/linux-tegra
Digital Visual Interface (DVI [®])	http://www.ddwg.org
Open LVDS Display Interface Standard Spec. (Open LDI^{TM})	http://www.national.com/analog/displays/open_ldi
IEEE 802.3 [®] Specification (Ethernet)	http://standards.ieee.org/getieee802
Universal Serial Bus Specification (USB)	http://www.usb.org/developers/docs
SD Specification (SD Card)	http://www.sdcard.org/developers/tech/sdio/sdio_spec

Appendix B: Document Revision History

Revision	Date	Author	Changes
S-0045-D	02/08/13	M. Hüttmann	Some minor changes in Android BSP chapter
S-0045-C	02/01/13	M. Hüttmann	Added chapters for Android and WEC7 BSPs, some changes in 'Linux BSP'
S0045-B	12/03/12	M. Hüttmann	Added some subchapter under 'Linux BSP' (Login, PCI Express, KEAPI)
S0045-A	11/19/12	M. Hüttmann	New Kontron design. Added chapter 'Linux BSP'
S0045-0	07/05/12	M. Hüttmann	Created preliminary manual

Corporate Offices

Europe, Middle East & Africa

Oskar-von-Miller-Str. 1 85386 Eching/Munich Germany Tel.: +49 (0)8165/ 77 777 Fax: +49 (0)8165/ 77 219 info@kontron.com

North America

14118 Stowe Drive Poway, CA 92064-7147 USA Tel.: +1 888 294 4558 Fax: +1 858 677 0898 info@us.kontron.com

Asia Pacific

17 Building,Block #1,ABP 188 Southern West 4th Ring Road Beijing 100070, P.R.China Tel.: + 86 10 63751188 Fax: + 86 10 83682438 info@kontron.cn

POWERED BY NVIDIA[®] TEGRA[®]